
Writing Good Error
Messages

Paul Keating
keating@acm.org

europython.2018@boargules.com

Roadmap
Introduction

Part 1: Good error messages are useful error messages

Part 2: A little framework for useful messages

Introduction
Paul Keating
on the internet: BoarGules

● Started with Python 1.5.2
● Has programmed in Python for a living since 1999
● First came to EuroPython at Charleroi, Belgium in 2003
● Supports an application with embedded languages

○ Python – with 2 huge APIs
○ An SQL dialect
○ A spreadsheet-like formula-oriented language
○ Other domain-specific mini-languages

● … that can all call one another

Useful for Who?
Be clear about who you expect to be reading your message:

● Interactive application: reader is probably an end-user
● Batch program: reader is a developer or does application support
● API: reader is a programmer (but maybe not very experienced)

Sometimes there are two audiences:

● The programmer who is calling into your library module
● The end-user of that progammer’s application

Is it understandable?

Is it understandable?
A stack trace is

● Indispensable to a programmer
● Of some value to a superuser
● Gobbledygook to everyone else
● Not useful to anyone without access to the source code

Is it understandable?
phone_numbers = {"Paul": "+31641890432",
 "Emergency": "112",
 "Voicemail": "+316240641890432" }
...
num = phone_numbers(customer)

Traceback (most recent call last):
 File "Tutorial101", line 26, in lookup_number
 num = phone_numbers(customer)
TypeError: 'dict' object is not callable

Is it understandable?

ResultSet object has no attribute 'prefix'.

Is it understandable?

ResultSet object has no attribute 'prefix'. You're probably treating a list of
items like a single item. Did you call find_all() when you meant to call find()?

Is it understandable?
class ResultSet(list):
 """A ResultSet is just a list that keeps track of the
 SoupStrainer that created it."""
 def __init__(self, source, result=()):
 super(ResultSet, self).__init__(result)
 self.source = source
 def __getattr__(self, key):
 raise AttributeError(
 "ResultSet object has no attribute '%s'. You're ⤸
 probably treating a list of items like a single ⤸
 item. Did you call find_all() when you meant to ⤸
 call find()?" % key

Is it explicit?
try:

 FSettlementProcess.CreateSettlementsFromTrade(trade,

 defaultProcessMessage, nettingRuleQueryCache)

except:

 logger.Log("Something went wrong with trade {0}"

 .format(trade.Oid()))

Is it explicit? – traceback is your friend
try:

 FSettlementProcess.CreateSettlementsFromTrade(trade,

 defaultProcessMessage, nettingRuleQueryCache)

except:

 logger.Log("Something went wrong with trade {0}"

 .format(trade.Oid()))

except RuntimeError:

 logger.Log("Unexpected failure while processing Trade {0}"

 .format(trade.Oid()))

 logger.Log(traceback.format_exc())

Is it unambiguous?
if payment.original() and payment.original().type != payment.type:

 if not payment.type in LimitedPaymentType:

 raise ValidationError('Users with profile component "Add '

 'Pmts to Simulated" can only use limited fee types.')

(...many lines of code...)
if not (payment.original() and not payment.type in

 LimitedPaymentType):

 raise ValidationError('Users with profile component "Add '

 'Pmts to Simulated" can only use limited fee types.')

Is it unambiguous?
if payment.original() and payment.original().type != payment.type:

 if not payment.type in LimitedPaymentType:

 raise ValidationError('Users with profile component "Add '

 'Pmts to Simulated" can only use limited fee types.')

(...many lines of code...)
if not (payment.original() and not payment.type in

 LimitedPaymentType):

 raise ValidationError('Users with profile component "Add '

 'Pmts to Simulated" can only use limited fee types..')

Does it point in the right direction?
def validate_settlement(settle, action):

 if settle.record_type == 'Settlement':

 import FValidationSettlement

 FValidationSettlement.settlement_validations (

 settle, action)

 try : validate_settlement(e, op)

 except: raise AttributeError("Error occurred in "

 "call to validate_settlement")

Does it point in the right direction?
def validate_settlement(settle, action):

 if settle.record_type == 'Settlement':

 import FValidationSettlement

 FValidationSettlement.settlement_validations (

 settle, action)

 try : validate_settlement(e, op)

 except: raise AttributeError("Error occurred in "

 "call to validate_settlement")

 validate_settlement(e, op)

Does it work?
try:

 curve_name = get_default_spread_curve(ins)

 (...many lines of code...)
 ins.Commit()

except Exception as e:

 print("Cannot commit Instrument {0} on {1}\n{2}"

 .format(ins.Name(), curve_name, e))

Does it work?
try:

 curve_name = get_default_spread_curve(ins)

 (...many lines of code...)
 ins.Commit()

except Exception as e:

 print("Cannot commit Instrument {0} on {1}\n{2}"

 .format(ins.Name(), curve_name, e))

But suppose the exception
is in here somewhere...

Does it work? Exception chains

Original exception

Exception in except

Traceback (most recent call last):

File "FAutoLink", line 303, in get_default_spread_curve

 u = ins.Underlying().Name()

AttributeError: 'NoneType' object has no attribute 'Name'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

File "FAutoLink", line 545, in link_instrument

 print("Cannot commit Instrument {0} on {1}\n{2}"

 .format(ins.Name(), curve_name, e))

UnboundLocalError: local variable 'curve_name'

referenced before assignment

Traceback (most recent call last):

File "FAutoLink", line 545, in link_instrument

 print("Cannot commit Instrument {0} on {1}\n{2}"

 .format(ins.Name(), curve_name, e))

UnboundLocalError: local variable 'curve_name' referenced before

assignment

Does it work? No exception chaining in Python 2

No mention of the original exception

Exception in except

Does it work? Force a zero-divide to test the message
try:

temp = 2 / 0

 curve_name = get_default_spread_curve(ins)

 (...many lines of code...)
 ins.Commit()

except Exception as e:

 print("Cannot commit Instrument {0} on {1}\n{2}"

 .format(ins.Name(), curve_name, e))

Part 2:
A little framework for useful error messages
● The situation
● The requirement
● The solution

A little framework for useful error messages

The situation
● The software environment
● The people who write the error messages
● The validation rules

The software environment
Python is embedded in an application

Application calls your validation function before every database save

Your validation function gets the object about to be saved. It can

● Silently return (save succeeds)
● Change the object, then return (save succeeds)
● Raise an exception (application rejects save)

○ Even if you didn’t intentionally raise the exception

The software environment
Application rejects a save like this:

The people who write the error messages
May be professional coders, but may also be

● Back office superusers
● Risk managers
● Accountants

The validation rules
Complex corner-case validation is written by subject experts, not professional
coders

End-users often report the message as a bug:

● “It won’t let me save this trade”
● “I ought to be allowed to do that/did the same thing yesterday”
● “Fix the error message”

Developers may also not understand the reason for the validation failure

A little framework for useful error messages

The requirement
● Simple cut’n’paste coding
● Must be possible to identify the rule (even if there are duplicate messages)
● Unintended exceptions must not bring the system to a halt

A little framework for useful error messages

The solution
● One simple class
● Distinguish between intentional exceptions and unintentional exceptions

Solution
Validation error class

class ValidationError(RuntimeError):

 def __init__(self, problem):

 RuntimeError.__init__(self,

 " \n{0} \n[{1}]".format(problem, _line()))

def _line():

 info = inspect.getframeinfo(

 inspect.currentframe().f_back.f_back)

 return "{0}:{2}:{1}".format(*info)

The software environment
Raising a ValidationError causes a pop-up that the end-user sees:

Validation callback

def validate_entity(entity, operation):

 try:

 my_validation_function(entity, operation)

 except ValidationError:

 raise

 except Exception:

 print("Untrapped exception in validation: please report "

 "to support team and include the traceback below")

 traceback.print_exc()

Solution

Solution
Validation callback

def validate_entity(entity, operation):

 try:

 my_validation_function(entity, operation)

 except ValidationError:

 raise

 except Exception:

 print("Untrapped exception in validation: please report "

 "to support team and include the traceback below")

 traceback.print_exc()

The real code
derives the
function name
from entity

When your error message may have two audiences

Deliver different levels of message via different channels
● End-user message in pop-ups
● Stack traces in a log

Define your own exceptions (don’t just raise RuntimeError)

Raise different kinds of exception for
● Errors on the application programmer’s part
● Things you expect the application programmer can anticipate and translate
● Things neither of you can do anything about

To sum up ...
An error message is a call to action.

What do you expect the reader to do with your error message?

● Is it understandable?
● Is it explicit?
● Is it unambiguous?
● Does it point in the right direction?

Questions

