
Writing and Running 
Tests in Docker
Or How to Test your Web Application Seamlessly... 

Alexandre Figura & Steffen Neubauer @ SysEleven GmbH 



Agenda

 2

1. Setting-up our development environment. 

2. Writing tests with Pytest. 

3. Automating tests with Tox. 

4. Running our application in Docker Compose. 

5. Managing our workflow with Invoke.



Useful Links

 3

1. Pytest documentation: https://docs.pytest.org/ 

2. Tox documentation: https://tox.readthedocs.io/ 

3. Docker documentation: https://docs.docker.com/engine/reference/builder/ 

4. Docker Compose documentation: https://docs.docker.com/compose/ 

5. Invoke documentation: http://www.pyinvoke.org/

https://docs.pytest.org/
https://tox.readthedocs.io/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
http://www.pyinvoke.org/


 4

Setting-Up Environment
1. Clone the demo application (blog + web API): 

git clone https://github.com/arugifa/ep2018-workshop
git reset --hard setup

2. Install requirements: 
• Python 3.6 
• Tox (+ Pip + Virtualenv) 
• Docker & Docker Compose 
• Google Chrome 

3. Create a temporary virtualenv: 
virtualenv -p python3.6 venv && source venv/bin/activate

https://github.com/arugifa/ep2018-workshop


 5

Writing Tests
1. Install Pytest + extensions: 

pip install requirements-test.txt

2. Have a look to existing fixtures: 
vim tests/conftest.py

3. Write tests: 
• Acceptance tests with Pytest-BDD for the blog, 
• End-to-end tests with Webtest for the web API.



 6

Automating Tests
• Write a Tox file (Tox.ini) with: 

• one Testing environment, 
• two Development environments: 

• One to be used locally (to get auto-completion in your IDE), 

• Another one to be used in Docker later on. 
• one Linting environment, 
• one environment to check Security Issues in dependencies.



 7

Running Tests
• Write two Dockerfiles: 

1. One for Production: 
• Based on Python 3.6 Alpine, 
• With manage.py as entrypoint, 
• We should be able to configure the 

database connection with an 
environment variable, 

2. Another one for Testing: 
• Based on the PROD image, 
• With test requirements 

and Tox installed inside the container.

• Write a Docker Compose file 
(docker-compose.yml): 
• With two services: 

• One for the web application, 
• Another one for PostgreSQL. 

• Share your local source code with 
the container.



 8

Managing Workflow
• Write Invoke tasks (tasks.py): 

• Two tasks: 

• One to run the demo server, 
• Another one to run tests with Tox. 

• Both tasks should run in Docker Compose, 
• Provide a debug mode so we can: 

• manually execute manage.py or Pytest inside Docker, 

• and use PDB for troubleshooting bugs.



We're hiring! Interested?  
Just say: "Hello!" 
Mail: jobs@syseleven.de 
WhatsApp, SMS, Threema: +49 171 89 34 073 

mailto:jobs@syseleven.de

