
Python for Control Systems, Big and Small

Thomas Kluyver, European XFEL GmbH

The big: European XFEL's 3.4 km tunnels under Hamburg. An XFEL (X-ray free
electron laser) accelerates electrons, then converts their energy into X-rays which are
focused onto a sample to investigate its molecular structure. The control system at
European XFEL is called Karabo.

The small: the Black Python, a one metre autonomous sailing boat built at the
University of Southampton. The boat is controlled by ROS (the Robot Operating
System) running on a Raspberry Pi.

Karabo

The Language Stack
Both systems have low level layers written in C++, and Python
interfaces for higher levels of control and coordination, as do
other control systems like Tango. The tried-and-tested compiled
language is popular where performance is important, and for
direct control of crucial hardware.

There are two ways to interface Python with low-level code.
Bindings allow Python to call lower-level functions in the same
process, which can be more efficient. Alternatively, the interface
can be built atop a communication layer, typically using
network sockets. ROS uses the latter approach, which also allows
interfaces from other languages, such as Lisp and Java. Karabo
has both a bound Python API and the 'middlelayer' API using the
messaging layer.

Messages

User Interfaces
Python is used to construct graphical user interfaces (GUIs) and
visualisations, such as the Karabo GUI, many rqt plugins for ROS,
and in other systems, such as Sardana for Tango. These
examples all use Qt, an open-source, cross-platform GUI toolkit,
along with plotting libraries such as matplotlib and PyQwt.

Control systems often expose a command line interface (CLI)
where a user can directly enter Python code. IKarabo and ITango
are both based on the popular IPython CLI, customised for their
respective control systems.

A scene in the Karabo GUI The rqt_graph plugin for ROS

Bridging Out

Karabo and ROS both use a publish/subscribe messaging
pattern, allowing components in different processes and
different computers to communicate. But the way they work
is quite different.

ROS nodes communicate directly, with a central ‘master’
which is used only to match up publishers and subscribers. As
used for the Black Python, ROS messages are repeated at
regular intervals, even if their data hasn't changed. This is a
simple way to improve reliability: if a subscriber node crashes
and is restarted, it will soon get the current data.

In Karabo, control data is sent through a central broker in a
distributed signals & slots system. Larger data, such as
camera images, can be sent directly between devices using
input and output channels.

Rosbridge provides a simpler JSON-based protocol for ROS.
Web pages can talk to Rosbridge from the browser using
websockets, so users can build dashboards in HTML and
Javascript.

Karabo bridge allows data analysis code to receive data
from Karabo without having to be built against the
framework. It uses ZeroMQ and msgpack to send data
efficiently. In the future, this may be extended to send data
back to Karabo as well.

The existence of these ‘bridge’ protocols may seem strange.
Both Karabo and ROS are built around parts communicating
over network sockets, but it's not practical to have everything
use the core protocol. Could simpler or more standardised
protocols avoid the need for a bridge? Perhaps the range of
systems that need to communicate is too broad for a single
protocol to work for all of them.

Holzkoppel 4, 22869 Schenefeld, Germany

www.xfel.eu

Recording Data
ROS' rosbag tool can record all the messages sent around a robot
system to a 'bag' file, which can be replayed later for debugging.
For the sailing project, bag flles could easily be stored on a Micro
SD card.

For European XFEL, the scale of the data produced (tens of GB
per second) makes recording more of a challenge. A number of
‘data acquisition’ devices running in parallel receive data from
selected sources and write it to HDF5 files on a parallel
filesystem. R
e
fe
r
e
n
c
e
s B. Heisen, et al. Karabo: An integrated software framework

combining control, data management, and scientific computing
tasks, in 14th ICALEPCS, San Francisco, USA, 2013

M. Quigley, et al. ROS: an open-source Robot Operating
System, in ICRA Workshop on Open Source Software, Vol. 3 No.
3.2, 2009.

in.xfel.eu/readthedocs/docs/karabo/en/latest/

www.ros.org




