\
yelp% s

Washing away code smells

@yennycheung #EuroPython %

ABOUT ME

Yenny Cheung
Originally from Hong Kong

Software Engineer at Yelp
On the Biz National team

In Hamburg

Speaker at PyConDE, PyDays
Vienna and Talk Python podcast

@yennycheung #EuroPython

Connecting
people with
great local

businesses

@yennycheung #EuroPython

1l Go to Yelp for Business Owners

ﬁﬁ Hire Mechanics in Minutes OllChange Body Shops ~ Windshield Repair Auto Repalr X

Find auto repair, burgers, spa: Near Edinburgh, United Kingdom

& Auto Repair ~ {{ Restaurants X Home Services ~ 8 Delivery

— B I e
Photo by Kenjl M.

Your Next Review Awaits

China Restaurant Golden
Wartenau 4

Flowers’ Whisper
Ménckebergstr. 7

Ume no Hana
Thadenstr. 15

Shiso Burger
Bugenhagenstr. 23

TriiffelSchwein
Mihlenkamp 54

China Feng
Ness 1

Some fun facts Yelpers have written 155 million reviews since 2004.

about Yelp

@ W

We have 74 million desktop and 30 million mobile app
monthly unique visitors.

We have over 500 developers.

2

We have over 300 services and our monolith yelp-main has
over 3 million lines of code!

@yennycheung #EuroPython

Agenda What are code smells?

for today
(?) Why do we care?

Q. How to use refactoring to wash away code smells?

t= Tips for bringing refactoring to your company

@yennycheung #EuroPython

What are
code smells?

@yennycheung #EuroPython

WHAT ARE CODE SMELLS

"A code smell is a surface indication that usually
corresponds to a deeper problem in the system."

- Martin Fowler, author of the book “Refactoring”

@yennycheung #EuroPython

Why do we care?

|

@yennycheung #EuroPython

WHY DO WE CARE ABOUT CODE SMELLS

"Let 1,000 flowers bloom. Then rip 999 of them
out by the roots."

- Peter Seibel, tech lead for Twitter’s Engineering Effectiveness group

@yennycheung #EuroPython

WHY DO WE CARE ABOUT CODE SMELLS

Code smells when left unchecked...

Builds up tech debt

(?» Allows code rot!

Q. Makes it harder to build flexible software

t» Decreases productivity and developer happiness

@yennycheung #EuroPython

to our rescue

)

)

)=

".! Refactoring comes

@yennycheung #EuroPython

WHAT IS REFACTORING

Refactoring is a changes the design of your
code but not the functionality.

@yennycheung #EuroPython

CODE SMELLS

Uncommunicative naming

Comments as deodorant

Dead code

Duplicated code

X% X X X

Conditional complexity

@yennycheung #EuroPython

def get cheese (mood, hunger, money):
if mood > 3:
if money == 0:
return None
good mood and hungry
if hunger > 4:
return 'bleu'
good mood and not hungry
else:
return 'american'
else:
if mood > 4:
return None
if money == O0:
return None
else:
bad mood and hungry
if hunger > 4:
return 'brie'
bad mood and not hungry
else:
return 'mozzarella'

if name == " main ":

cheese = get cheese(3, 5, 1)

REFACTORING

Better!

o2& Guard clauses

X Keyword arguments, PEP8
compliant too!

@yennycheung #EuroPython

def get cheese (mood, hunger, money) :

"""Evaluate criteria and pick cheese."""

is_happy = mood > 3
is_hungry = hunger > 4
has money = money > 0

if not has money:
return None

if is_hungry and not is_ happy:
return 'brie'

if not is_hungry and is_happy:
return 'american'

if not is _hungry and not is_ happy:
return 'mozzarella'

else:
return 'bleu'

if name == " main ":
cheese = get cheese(
mood=3,
hunger=5,
money=1,

Refactoring
deep-dive

@yennycheung #EuroPython

REFACTORING TECHNIQUES

X% X X X

Uncommunicative naming —
Name it right!

Comments as deodorant —
Name it right!

Dead code —
Remove code

Duplicated code —
DRY

Conditional complexity —

Decompose conditional into
guard clauses

@yennycheung #EuroPython

def get cheese (mood, hunger, money):
if mood > 3:
if money == 0:
return None

good mood and hungry

if hunger > 4:
'bleu’
good mood and not hungry

return

else:
return 'american'
else:
if mood > 4:
return None
if money ==

return None
else:
bad mood and hungry
if hunger > 4:
return 'brie'
bad mood and not hungry

else:
return 'mozzarella'
if name == " main ":
cheese = get cheese(3, 5, 1)

REFACTORING TECHNIQUES

Refactoring
Techniques @ Name it right!

Get organized

Picking the right data structure

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
NAME IT RIGHT

Name it nghtl A cure for uncommunicative naming
@ Python is dynamically typed

Variable, function & module naming
Keyword arguments increase clarity

Replace magic strings and numbers with Enums!

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
NAME IT RIGHT >
ENUM

Enum how to

< Explicit

o2& Supports iterable

& Enum members are hashable

@yennycheung #EuroPython

/

>>> class Mood (Enum) :

EXUBERANT =
CONTENT = 1
APATHETIC
MELANCHOLIC

0

>>> for mood in Mood:

print (mood)

Mood.EXUBERANT
Mood.CONTENT
Mood.APATHETIC
Mood.MELANCHOLIC

>>> print (Mood.EXUBERANT)
Mood.EXUBERANT
>>> print (repr (Mood.EXUBERANT))
<Mood.EXUBERANT : 0>

>>>
>>>
>>>
>>>
>>>

my mood count this week = {}

my mood count this week
my mood count this week
my mood count this week

my mood count this week
{<Mood.APATHETIC : 2
<Mood.MELANCHOLIC :

>t

3>:

3,
1}

<Mood.EXUBERANT :

[Mood.EXUBERANT]
[Mood.MELANCHOLIC]
[Mood.APATHETIC]

0>:

REFACTORING TECHNIQUES >
GET ORGANIZED

Get organized A cure for long functions, classes and parameter lists
@ Single Responsibility principle

@

Function extraction

Decompose conditionals

DRY (Don’t repeat yourself)

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
GET ORGANIZED >
FIXING LONG PARAM LISTS

Fixing long
parameter lists

& Long param list

< NamedTuples to the rescue

@yennycheung #EuroPython

def identify cheese(
country,
smell,
touch,
city,
year,
taste,

class CheeseProductionInfo (NamedTuple) :
country: str
city: str
year: str

class CheeseAttributes (NamedTuple) :
smell: str
taste: str
touch: str

def identify cheese(
cheese production info,
cheese attributes,

REFACTORING TECHNIQUES >
PICKING THE RIGHT DATA STRUCTURE

Picking the right data
structure (® Dictionaries

NamedTuples
Lists

Sets

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
PICKING THE RIGHT DATA STRUCTURE >

DICTIONARIES
>>> def sum cheese(
cheese counts={
e 'bleu':0,
Picking the right ‘brie':0
data structure e)
.
cheese counts['bleu'] +=1
2% Using dictionaries >>> sum cheese. defaults

({'brie': 0, 'bleu': 0},)

o2& Beware that dictionaries are
mutables! >>> sum_cheese ()
>>> sum cheese. defaults

({'brie': 0, 'bleu': 1},)

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
PICKING THE RIGHT DATA STRUCTURE >
NAMEDTUPLES

>>> from typing import NamedTuple

>>> class CheeseCounts (NamedTuple) :

Picking the right ... bleu: int

data structure ... brie:int
>>> CheeseCounts. new . defaults = (0, 0)
% Usmg NamedTupleS >>> print (CheeseCounts (pbrie=2))

CheeseCounts bleu=0, brie=2)

22 NamedTuples are immutables
>>> print (CheeseCounts())

CheeseCounts (bleu=0, brie=0)

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
PICKING THE RIGHT DATA STRUCTURE >
LISTS

Picking the right
data structure

& Using Lists

o2& This is very verbose

@yennycheung #EuroPython

def select favorite cheese from catalod
cheese catelog,
my favorite cheese,

selected cheese = []
for cheese in cheese cateloag:
if cheese in my favorite cheese:
selected cheese.append(cheese)
return selected cheese

select favorite cheese from catalod
cheese catelog=[
Cheese.BLEU,
Cheese.CHEDDAR,
1,
my favorite cheese=[
Cheese. TRUFFLE BRIE,
Cheese.BLEU,

1,

>>> [<Cheese.BLEU: 'Bleu'>]

REFACTORING TECHNIQUES >
PICKING THE RIGHT DATA STRUCTURE >
SETS def select favorite cheese from catalod

cheese catelog,
my favorite cheese,

return (

Picking the right cheese_catelog
.intersection(my favorite cheese)
data structure)

select favorite cheese from catalod
. cheese catelogeset ([
% USIﬂg Sets Cheese.BLEU,
Cheese.CHEDDAR,
1),

% Set comparisons are great my favorite cheesesset ([
Cheese.TRUFFLE BRIE,

Cheese.BLEU,
1),

>>> {<Cheese.BLEU: 'Bleu'>}

@yennycheung #EuroPython

REFACTORING TECHNIQUES >
PICKING THE RIGHT DATA STRUCTURE

Check out the standard library, especially
Itertools and Collections for handy tools!

@yennycheung #EuroPython

Testing
in the refactoring
process

N

<O

@yennycheung #EuroPython

TESTING

Testing in the
refactoring 1. Write integration / end-to-end tests for the code to

be refactored
process Tests that your application will still behave the same

2. Refactoring

3. Write unit tests for refactored code
Tests that the code is correct

@yennycheung #EuroPython

Tips for bringing refactoring
to your company

@yennycheung #EuroPython

ADVOCATING FOR REFACTORING

The secret
weapon of
code reviews

@yennycheung #EuroPython

(? Boy scout rule: leave it cleaner than you found it

Q. Encourage refactoring when we add code and fix bugs

ADVOCATING FOR REFACTORING

How to
convince your
product
manager

@yennycheung #EuroPython

®

Q

Break down the tasks and take maintenance into account,
with refactoring, 4 weeks, otherwise 6 weeks

If all things fail, abstracting out the implementation detail,
adjust estimates to include refactoring and test, “this feature
takes X”

ADVOCATING FOR REFACTORING

Automate your
refactoring
process

@yennycheung #EuroPython

(®» Yelp’s open source tool: Undebt
Based on pyparsing, massive find and replace tool

Q. Yelp uses a debt tracker: Branch Debt

Example metrics: noga count, deprecated function count,
lines added to our monolith yelp-main

https://github.com/asottile/git-code-debt
https://github.com/Yelp/undebt

Takeaways What are code smells?

from the talk
(?) Why do we care?

Q. How to use refactoring to wash away code smells?

t= Tips for bringing refactoring to your company

@yennycheung #EuroPython

\
yelp% s

Thank you!

@yennycheung #EuroPython

A\ RS
yelp®s

Questions?

@yennycheung #EuroPython

