
MIGRATING EXISTING CODEBASES TO USING TYPEMIGRATING EXISTING CODEBASES TO USING TYPE
ANNOTATIONSANNOTATIONS

Stephan Jaensch
@s_jaensch

YELP'S MISSIONYELP'S MISSION
To connect people with great local businesses

WHAT I'LL TALK ABOUTWHAT I'LL TALK ABOUT
What are type annotations, and why you should use them
How do you incrementally migrate an existing codebase to
them
What are some issues you might encounter
How can type annotations help across services

OTHER TALKS ABOUT TYPE ANNOTATIONSOTHER TALKS ABOUT TYPE ANNOTATIONS
Carl Meyer: Type-checked Python in the real world (Instagram)
Greg Price: Clearer Code at Scale: Static Types at Zulip and
Dropbox

PYTHON TYPE ANNOTATIONSPYTHON TYPE ANNOTATIONS
def hello(who: str) -> str:
 return 'Hello, {}'.format(who)

hello(5)

error: Argument 1 to "hello" has incompatible type "int";
 expected "str"

def process_data(self, items):
 self.values = [item.value.id for item in items]

MIGRATE A CODEBASE TO USING TYPE ANNOTATIONSMIGRATE A CODEBASE TO USING TYPE ANNOTATIONS
Goal: All code is type annotated
Incrementally annotate code
Make sure checks are run for annotated
code

THE MYPY TYPE CHECKERTHE MYPY TYPE CHECKER

PYREPYRE

ENFORCE ANNOTATIONSENFORCE ANNOTATIONS
[mypy]
check_untyped_defs = True
disallow_untyped_calls = False
disallow_untyped_defs = True
follow_imports = silent
ignore_missing_imports = True
python_version = 3.6
strict_optional = True
warn_redundant_casts = True

CHECKING SOURCE CODE ON COMMITCHECKING SOURCE CODE ON COMMIT

CONFIGURING PRE-COMMITCONFIGURING PRE-COMMIT
- repo: local
 hooks:
 - id: mypy
 name: mypy
 entry: mypy
 language: python
 language_version: 'python3.6'
 additional_dependencies: ['mypy']
 args: ['--config-file', 'mypy-pre-commit.ini']
 files: ^package_name/.+\.py$

pre-commit install -f --install-hooks

CHECKING SOURCE CODE ON COMMITCHECKING SOURCE CODE ON COMMIT

RUNNING MYPY AS PART OF YOUR TEST SUITERUNNING MYPY AS PART OF YOUR TEST SUITE
[mypy]
ignore_missing_imports = True
python_version = 3.6
strict_optional = True
warn_redundant_casts = True

AUTO-GENERATING TYPE ANNOTATIONSAUTO-GENERATING TYPE ANNOTATIONS

TYPE YOUR DATATYPE YOUR DATA
from typing import Iterable, NamedTuple, Optional

class Business(NamedTuple):
 id: int
 name: str
 photos: Iterable[Photo]
 address1: Optional[str]
 address2: Optional[str]
 address3: Optional[str]
 city: str
 latitude: float
 longitude: float
 ...

TYPED DICTIONARIESTYPED DICTIONARIES
from typing import Optional
from mypy_extensions import TypedDict

class BusinessDict(TypedDict):
 id: int
 name: str
 address1: Optional[str]
 address2: Optional[str]

def get_biz_address(business: BusinessDict) -> str:
 ...
 value = business.get('adress2', '')

error: TypedDict "BusinessDict" has no key 'adress2'

CONVERTING DICTS TO NAMEDTUPLESCONVERTING DICTS TO NAMEDTUPLES
def namedtuple_from_dict(
 nt_class,
 dict_values,
):
 """Create a namedtuple from a dict, using the namedtuple
 attribute names to look up values in the dict."""
 return nt_class._make(
 dict_values.get(k) for k in nt_class._fields
)

HOW TO TYPE THE HELPER FUNCTION?HOW TO TYPE THE HELPER FUNCTION?
def namedtuple_from_dict(
 nt_class: Type[NamedTuple],
 dict_values: Dict[str, Any],
) -> NamedTuple:
 """Create a namedtuple from a dict, using the namedtuple
 attribute names to look up values in the dict."""
 return nt_class._make(
 dict_values.get(k) for k in nt_class._fields
)

error: Incompatible return value type
 (got "NamedTuple", expected "Business")
error: Argument 1 to "namedtuple_from_dict" has incompatible
 type "Type[Business]"; expected "Type[NamedTuple]"

USING GENERICSUSING GENERICS
Struct = TypeVar('Struct', bound=NamedTuple)

def namedtuple_from_dict(
 nt_class: Type[Struct],
 dict_values: Dict,
) -> Struct:
 """Create a namedtuple from a dict, using the namedtuple
 attribute names to look up values in the dict."""
 return nt_class._make(
 dict_values.get(k) for k in nt_class._fields
)

error: Value of type variable "Struct" of "namedtuple_from_dict"
 cannot be "Business"

THE SOLUTION: PROTOCOLSTHE SOLUTION: PROTOCOLS
from typing_extensions import Protocol

T = TypeVar('T')
class NTProto(Protocol):
 _source: str
 _fields: Tuple[str, ...]

 @classmethod
 def _make(cls: Type[T], iterable: Iterable[Any]) -> T: ...
 # add other methods, if needed

NT = TypeVar('NT', bound=NTProto)
def namedtuple_from_dict(
 nt_class: Type[NT],
 dict_values: Dict[str, Any],
) -> NT:
 return nt_class._make(
 dict_values.get(k) for k in nt_class._fields
)

NAMEDTUPLE AND COUNT / INDEXNAMEDTUPLE AND COUNT / INDEX
class Pagination(NamedTuple):
 count: int
 index: int

error: Incompatible types in assignment (expression has type "int",
 base class "tuple" defined the type as
 "Callable[[Tuple[int, ...], Any], int]")

error: Incompatible types in assignment (expression has type "int",
 base class "tuple" defined the type as
 "Callable[[Tuple[int, ...], Any, int, int], int]")

HOW TO ANNOTATE DESCRIPTORSHOW TO ANNOTATE DESCRIPTORS
T = TypeVar('T')
V = TypeVar('V')

class SetOnceProperty(Generic[T, V]):

 def __get__(self, instance: T, owner: Type[T]) -> V:
 return self._property_map[instance]

 def __set__(self, instance: T, value: V) -> None:
 if instance in self._property_map:
 raise AttributeError(
 'this attribute can only be set once.'
)
 self._property_map[instance] = value

class BizAppContext():
 biz_user_id = SetOnceProperty['BizAppContext', int]()
 ...

RECURSIVE TYPESRECURSIVE TYPES
class Category(NamedTuple):
 id: int
 name: str
 children: List['Category']

error: Recursive types not fully supported yet,
 nested types replaced with "Any"

TYPE ANNOTATIONS WITH DISTRIBUTED CODETYPE ANNOTATIONS WITH DISTRIBUTED CODE

SERVICE ORIENTED ARCHITECTURESERVICE ORIENTED ARCHITECTURE

ANATOMY OF A SERVICE CALLANATOMY OF A SERVICE CALL

THE OPENAPI SPECTHE OPENAPI SPEC
/business/{business_id}/v1:
 get:
 operationId: business_info
 parameters:
 - $ref: '#/parameters/AcceptLanguage'
 - description: Business identifier
 in: path
 name: business_id
 required: true
 type: int
 responses:
 '200':
 schema:
 $ref: '#/definitions/Business'
...

AN OPENAPI MODELAN OPENAPI MODEL
Business:
 properties:
 address1:
 type: string
 address2:
 type: string
 alias:
 type: string
 has_business_upgrades:
 type: boolean
 review_rating:
 type: string

MAKING A SERVICE CALLMAKING A SERVICE CALL
from business_clientlib.client import create_client

client = create_client(...)

business = client.business.business_info(
 business_id=business_id,
).result(timeout=TIMEOUT)

return business.review_rating

TESTING OUR NETWORK CODETESTING OUR NETWORK CODE
def get_business_review_rating(business_id: int) -> float:
 business = client.business.business_info(
 business_id=business_id,
).result(timeout=TIMEOUT)

 return business.review_rating

def test_get_business_review_rating():
 mock_business = mock.Mock(review_rating=4.5)
 with mock.patch('my_package.client') as client:
 client.business.business_info.return_value.\
 result.return_value = mock_business

 review_rating = get_business_review_rating(5)

 assert review_rating == mock_business.review_rating

GENERATING TYPED OBJECTS AND FUNCTIONSGENERATING TYPED OBJECTS AND FUNCTIONS

GENERATING MODEL ANNOTATIONSGENERATING MODEL ANNOTATIONS
class Business():
 id: int
 address1: str
 address2: Optional[str]
 review_rating: str

TESTING WITH TYPE SAFE DATA MODEL OBJECTSTESTING WITH TYPE SAFE DATA MODEL OBJECTS
def get_business_review_rating(business_id: int) -> float:
 business = client.business.business_info(
 business_id=business_id,
).result(timeout=TIMEOUT)

 return business.review_rating

def test_get_business_review_rating():
 mock_business = models.Business(review_rating=4.5)
 with mock.patch('get_business_future') as mock_future:
 mock_future.return_value.\
 result.return_value = mock_business

 review_rating = get_business_review_rating(5)

 assert review_rating == mock_business.review_rating

error: Argument 1 to "Business" has incompatible
 type "float"; expected "str"

ANNOTATING THE CLIENT CLASSANNOTATING THE CLIENT CLASS
business = client.business.business_info(
 business_id=business_id,
).result(timeout=TIMEOUT)

T = TypeVar('T')

class BusinessServiceClient:
 business: business_resource

class business_resource:
 def business_info(
 self,
 business_id: int,
) -> HttpFuture[Business]: ...

class HttpFuture(Generic[T]):
 def result(self, timeout: Optional[float]=None) -> T:
 ...

TAKE AWAYSTAKE AWAYS
Annotate your code to improve documentation and catch bugs earlier
With �ne-grained typed data structures you gain a lot of insights into the
data �ow of your application
Potentially reduce the number of tests you have to write
Make the tests you do write more correct and comprehensive, and
therefore more valuable
You can use generated annotations to type check communication across
network boundaries

THANK YOU!THANK YOU!
github.com/sjaensch/type_annotations_talk

@s_jaensch

