Q

QUANTLANE

Python, Docker, Kubernetes,
and beyond?

Peter Babics | EuroPython 2018

July 25,2018

Q QUANTLANE

e Based in Prague

e Small team of developers

e Developing a trading platform and strategies
e Using open source

Our trading platform and tooling

e Python 3.6 + React.js

® asyncio

e Redis & TimescaleDB for storage

e Integrating third party libraries using Cython
e Dozens of processes

e Messaging - Kafka / RabbitMQ

In the beginning

There was chaos

In the beginning

Applications deployed on physical servers
Managed by circus

Packagesinstalled in virtualenv
Under a single user

Pros

e Simple implementation and deployment

Cons

e Package versioning hell
e No failover

A wild blue whale appeared

&

docker

The promise of a brighter future

e Unified environment

e Simple deployment

e Simple migrations

e Faster Continuous Integration (Cl)
e Atomic releases

Migration challenges

e Image storage - GitLab registry
e Image caching
e Dedicated building environment

build_job:
script:
- docker build -t $CI_IMAGE_NAME .

build_job:
script:
- 'docker run -d -p 9000:9000 -v "/:/data" sleep 1y'

e Cl pipeline design
e Cleaning up old images

Migration highlights

e Unified, stable environment
e Fast builds

e |solated environments

e Faster Cl pipeline

Build
() build
®) re-push

>

Test

@ code-quality
@ deepag-tests
@ fixture-test
@ packagetest

@ unittest

Q

Q

Q

Push-image

(@) release:bleed...

() releasexersion

>

L

Deploy-staging

@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...
@ deploy-staging...

@ deploy-staging...

Itest

(@) Itestitest_data...
(@) itestitest_data...
(®) itestitest_data...
@ itest:test_data...
@ itest:test_data...
@ itest:test_dee...
@ itesttest_end...
@ itest:test_fair_...

@ itest:test_start...

@ itest:test state

Q

=

<

<

Docs

() docs:publish

(e

Cons of plain Docker

e Known bugs
e No failover
e dockerdisasingle point of failure

Docker gotchas

e PID 1 pitfall
e User permissions within containers

kubernetes

Ahoy!

Warmly welcomed features

e Failover when a server fails
e Configuration stored in namespaces
e Service discovery

my-service.my-namespace.svc.cluster.local

e Ingress controller
e Deployment history

$ kubectl rollout undo deployment my-app

Where we are now

e Migration to Kubernetes is in progress
e Environment is configured by namespace variables
e Deployments are described in Jinja2 templates

set env_type, profile_name = PROFILE.split('_', 1) %}
set namespace = "my-ns-" + env_type %}
set data_directory_mount = '/data' %}

if profile_name == 'cthulu' %}
- name: API_KEY
valueFrom:
secretKeyRef:
name: secret
key: api_key
- name: SUBSCRIPTION_INSTRUMENT_FILTER
value: 'False'
endif %}

Notable features

e Probes
e Update strategies

Update strategies - Rolling update

Rolling update

Version 1 ,
¢

| Version 2
[’

Deploy version 2 _V;EDH 2
available & stable

Update strategies - Recreate

Recreate
Version 1 ,
é
Version 2 |
0 s
Deploy version 2 Version 2

available & stable

\

QUANTLANE

Thank you

peter.babics@quantlane.com

github.com/gntln

mailto:peter.babics@quantlane.com
https://github.com/qntln

