PySpark - Data Processing in Python
on top of Apache Spark

Peter Hoffmann

Twitter: @peterhoffmann

github.com/blue-yonder

blueyonder

blueyonder

Tue 16:45 Barria 1
Holger Peters

Wed 11:00 A2
Sebastian
Neubauer

Wed 12:30 Barria1
Stephan Erb

Wed 15:45 Google
Patrick Mihlbauer

Wed 16:45 Google
Peter Hoffmann

Thu 12:30 Python
Moritz Gronbach

Thu 16:45 Barria1l
Christian Trebing

Fri 11:45 Barria2
Florian Wilhelm

Fri 14:30 A2
Phillip Mack

USING SCIKIT-LEARN'’S INTERFACE FOR
TURNING SPAGHETTI DATA SCIENCE INTO
MAINTAINABLE SOFTWARE

A PYTHONIC APPROACH TO CONTINUOUS
DELIVERY

RELEASE MANAGEMENT WITH DEVPI

BUILDING NICE COMMAND LINE
INTERFACES — A LOOK BEYOND THE
STDLIB

PYSPARK — DATA PROCESSING IN PYTHON
ON TOP OF APACHE SPARK

WHAT’'S THE FUZZ ALL ABOUT?
RANDOMIZED DATA GENERATION FOR
ROBUST UNIT TESTING

BUILDING A MULTI-PURPOSE PLATFORM
FOR BULK DATA USING SQLALCHEMY

“IT'S ABOUT TIMETO TAKE YOUR
MEDICATION!” ORHOW TO WRITE A
FRIENDLY REMINDER BOT

PYTHON IN THE WORLD OF RETAIL AND
MAIL ORDER

Spark Overview

Spark is a distributed general purpose cluster
engine with APIs in Scala, Java, R and Python and
has libraries for streaming, graph processing and

machine lea rning. Spark SQL Spark Streaming MLib GraphX
structured data real time machine learning @ graph processing
Spark offers a functional programming API to

(RDDs).

. . . . Standalone Scheduler YARN Mesos
Spark Core is a computational engine responsible f_ 1

for scheduling, distribution and monitoring
applications which consist of many
computational task across many worker
machines on a complutation cluster.

blueyonder

Resilient Distributed
Datasets

RDDs reperesent a logical plan to compute a dataset.

RDDs are fault-toloerant, in that the system can revocer
lost data using the lineage graph of RDDs (by rerunning
operations on the input data to rebuild missing partitions).

RDDs offer two types of operations:

e Transformations construct a new RDD from one or
more previous ones

e Actions compute a result based on an RDD and either
return it to the driver program
or save it to an external storage

blueyonder

RDD Lineage Graph

Transformations are Operations on RDDs that
return a new RDD (like Map/Reduce/Filter).

Many transformations are element-wise, that is
that they work on an alement at a time, but this
is not true for all operations.

Spark internally records meta-data RDD Lineage

Graph on which operations have been requested.

Think of an RDD as an instruction on how to
compute our result through transformations.

Actions compute a result based on the data and
return it to the driver prgramm.

blueyonder

..............

..............

..............

Transformations

map, flatMap

mapPartitions, mapPartitionsWithlndex
filter

sample

union

intersection

distinct

groupByKey, reduceByKey
aggregateByKey, sortByKey

join (inner, outer, leftouter, rightouter, semijoin)

blueyonder

Narrow Dependencies

join with inputs
co-partitioned

Wide Dependencies
-\-
A o
=

groupByKey

s =

join with inputs not
co-partitioned

Spark Concepts

RDD as common interface

set of partitions, atomic pieces of the dataset

set of dependencies on parent RDD

a funtion to compute dataset based on its parents

metadata about the partitioning schema and the data placement.
when possible calculation is done with respect to data locality

data shuffle only when necessary

blueyonder

What ist PySpark

The Spark Python API (PySpark) exposes the Spark programming
model to Python.

text _file = sc.textFile("hdfs://...")

counts = text file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

blueyonder

Spark, Scala, the
JVM & Python

blueyonder

Spark
Context

I

Py4J
Spark Context

ocal

ZAN

Python

Spark Worker

Python

Python

Y Spark Worker
«—>

Python

Python

Python

<>
¥ Spark Worker
<—>»

Python

<>
N Spark Worker
<>

Python

Cluster

Relational Data Processing
In Spark

User Programs
(Python, Java, Scala, R)

Console

Spark SQL is a part of Apache Spark that extends the
funcional programming APl with relational processing,
declarative queries and optimized storage.

Spark SQL DataFrame API
Catalyst Optimizer

Spark

It provieds a programming abstraction called DataFrames
and can also act as a distributed SQL query engine.

Tight integration between relational and procedual
processing through a declarative DataFrame API. It
includes catalyst, a highly extensible optimizer.

The DataFrame API can perform relational operations on
external data soueces and Spark's built-in distributed
collections.

Resilient Distributed Dataset

blueyonder

DataFrame API

DataFrames are a distributed collection of rows gropued into named
columns with a schema. High level api for common data processing

tasks:

e project, filter, aggregation, join, metadata, sampling and user defined

functions

As with RDDs, DataFrames are lazy in that each DataFrame object
represents a logical plan to compute a dataset. It is not computed until

an output operation is called.

blueyonder

DataFrame

A DataFrame is equivalent to a relational table in SparkSQL and can
be created using vairous funcitons in the SQLContext

Once created it can be manipulated using the various domain-
specific-language functions defined in DataFrame and Column.

df = ctx.jsonFile("people.json")
df .filter(df.age >21).select(df.name, df.age +1)
ctx.sql('"select name, age +1 from people where age > 21")

blueyonder

Catalyst

Catalyst is a query optimization framework
embedded in Scala. Catalyst takes advantage of
Scala’s powerful language features such as
pattern matching and runtime metaprogramming
to allow developers to concisely specify complex

Spark Python DF

Spark Scala DF

relational optimizations RDD Python e
SQL Queries as well as queries specified through RDD Scala m

the declarative DataFrame API both go throug 0 2 4 6 8 10
the same Query Optimizer which generates JVM Performance of aggregating 10 million int pairs (secs)

Bytecode.

ctx.sql("select count(*) as anz from employees where gender = 'M'")
employees.where(employees.gender == "M").count()

blueyonder

Data Source API

Spark can run in Hadoop clusters and
access any Hadoop data source, RDDs on
HDFS has a partition for each block for the
file and knows on which machine each file
IS.

A DataFrame can be operated on as normal
RDDs and can also be registered as a
temporary table than they can be used in
the sqgl context to query the data.

DataFrames can be accessed through Spark
via an JDBC Diriver.

blueyonder

Bl Tools

Spark Applications
(Python, R, Scala, Java)
Machine Learning (MLib)

JDBC

\

Spark Data Source API

Data Input - Parquet

Parquet is a columnar format that is
supported by many other data processing
systems. Spark SQL provides support for
both reading and writing Parquet files that
automatically preserves the schema of the
original data.

row oriented storage

column oriented storage

encode

Parquet supports HDFS storage.

employees.saveAsParquetFile("people.parquet')

A 4
pf = sqglContext.parquetFile('"people.parquet")
pf.registerTempTable('"parquetFile")

long_timers = sqglContext.sql("SELECT name FROM parquetFile WHERE emp_no < 10050")

blueyonder

Vertical partitioning Horizontal partitioning Read only the
(projection push down) (predicate push down) data you need!

[:)l'(:[jfff(:ftri(:)lﬂl éS;L A1 C1 A1 Bi Ci A1 B Ci
Predicate push - -

A3 B3 A3 B3 B3 A3 B3 B3
+ =
down g K pa
A5 Ch A5
AB C6 AB

blueyonder

Supported Data Types

Numeric Types e.g. Bytelype, IntegerType, FloatType

StringType: Represents character string values

BytelType: Represents byte sequence values

Datetime Type: e.g Timestamplype and DateType

ComplexTypes

e Arraylype: a sequence of items with the same type

e Maplype: a set of key-value pairs

o StructlType: Represents avalues with the structure described by a sequence of StructFields

o StructField: Represents a field in a Structlype

blueyonder

Schema Inference

The schema of a DataFrame can be inferenced from the data
source. This works with typed input data like Avro, Parquet or
JSON Files.

>>> L = [dict(name="Peter", id=1), dict(name="Felix", 1d=2)]
>>> df = sglContext.createDataFrame(l)
>>> df.schema
. StructType(List(StructField(id, LongType, true),
StructField(name, StringType, true)))

blueyonder

Programmatically Specifying the Schema

For data sources without a schema definition you can programmatically specify the
schema

employees _schema = StructType([

StructField(' 'emp no', IntegerType()),
StructField('name', StringType()),
StructField('age', IntegerType()),
StructField('hire date', DateType()),

1

df = sglContext.load(source="com.databricks.spark.csv'", header="true",
path = filename, schema=employees schema)

blueyonder

Important Classes of SparkSQL an DataFrames

e SQLContext Main entry point for DataFrame and SQL functionality
 DataFrame a distributed collection of data grouped into named columns
e Column a column expression in a DataFrame

e Row a row of data in a DataFrame

e GroupedData Agrregation methods, returned by DataFrame.groupBy()

e types List of data types available

blueyonder

DataFrame Example

Select everybody, but increment the age by 1
df .select(df['mame'], df['age'] + 1).show()

name (age + 1)

Michael null

Andy 31

Justin 20

Select people older than 21

df .filter(df['age'] > 21).show()
age name

30 Andy

Count people by age
df .groupBy("age").count().show()

blueyonder

Demo GitHubArchive

GitHub Archive is a project to record the
public GitHub timeline, archive it, and
make it easily accessible for further
analysis

e https:/www.githubarchive.org
e 27GB of JSON Data
e 70,183,530 events

blueyonder

Summary

Spark implements a distributed general purpose
cluster computation engine.

PySpark exposes the Spark Programming Model to
Python.

Resilient Distributed Datasets represent a logical
plan to compute a dataset.

DataFrames are a distributed collection of rows
grouped into named columns with a schema.

DataFrame API allows maniplulation of DataFrames
through a declarative domain specific language.

blueyonder

User Programs
(Python, Java, Scala, R)

Console

Spark SQL DataFrame API
Catalyst Optimizer

Spark

Resilient Distributed Dataset

We love Big Data.
You love statistics.

| et's get together >>

www.blue-yonder.com

