
MINDS & MACHINES & PYTHON
DANIELE PROCIDA

ALL ABOUT ME

DANIELE PROCIDA

▸ Community manager, Divio

▸ django CMS developer

▸ Django core developer

▸ Board member, Django Software Foundation

▸ daniele.procida@divio.com

▸ EvilDMP (IRC, GitHub, Twitter)

ALL ABOUT ME

DANIELE PROCIDA

▸ Community manager, Divio

▸ django CMS developer

▸ Django core developer

▸ Board member, Django Software Foundation

▸ daniele.procida@divio.com

▸ EvilDMP (IRC, GitHub, Twitter)

ALL ABOUT ME

DANIELE PROCIDA

▸ Community manager, Divio

▸ django CMS developer

▸ Django core developer

▸ Board member, Django Software Foundation

▸ daniele.procida@divio.com

▸ EvilDMP (IRC, GitHub, Twitter)

MINDS & MACHINES & PYTHON

THE [...] QUESTION, "CAN
MACHINES THINK?" [IS]
TOO MEANINGLESS TO
DESERVE DISCUSSION.
Alan Turing

In 1950, in his paper “Computing Machinery and Intelligence” in Mind, Alan Turing
brilliantly turned the question of whether machines could think on its head, arguing
that “the [...] question, Can machines think? [is] too meaningless to deserve
discussion.”

Instead of asking whether thought can occur inside a digital computer, he invited
us to consider whether a machine could, in principle, be indistinguishable from a
human, in those respects that allow us to say that a human thinks or has
intelligence.

He was applying insights from the philosophy of mind that emerged in the first half
of the 20th century, which also moved the questions of mind and intelligence away
from a concern with the metaphysics of thought and the intrinsic nature of
consciousness, towards questions like what constitutes an interaction with
intelligence? or how do we recognise other minds?

GILBERT RYLE LUDWIG WITTGENSTEIN

In other words, Turing, like philosophers such as Gilbert Ryle and Ludwig
Wittgenstein, argued that the search for mind was not a search into inner
mysteries, but a matter of recognising what was in front of us all along.

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ WHAT GOES ON INSIDE
‣ CONSCIOUSNESS
‣ THOUGHT

‣ WHAT GOES ON OUTSIDE
‣ BEHAVIOUR
‣ INTERACTIONS

We can say that this represents a fork in the study of artificial intelligence. Turing’s
argument in a way freed researchers from having to clamber into those very
opaque mysteries, and instead concentrate on producing, for example, interactions
that seem like encounters with intelligence.

This has not just been the dominant fork since then, it has also been by far the
most successful.

Its fruits are are all around us, literally in our pockets. The power of machines to
recognise - language, faces, text, road traffic - and to respond appropriately, has
taken us by surprise. I think that by Turing’s account we are indeed living at the
beginning of an age of machine intelligence.

But, what about that other fork? What about that lonelier furrow, in which people
have tried to unpick some of the mysteries of thought itself. Turing was a very
intelligent thinker, but just because he dismissed a question as “too meaningless to
deserve discussion” doesn’t mean that it is.

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ WHAT GOES ON INSIDE
‣ CONSCIOUSNESS
‣ THOUGHT

‣ WHAT GOES ON OUTSIDE
‣ BEHAVIOUR
‣ INTERACTIONS

JOSEPH WEIZENBAUM JOHN SEARLE

Some fine minds have in fact disagreed with him enough to expend their efforts
there, including researchers in computing, like Joseph Weizenbaum, and
philosophers such as John Searle.

Weizenbaum’s book Computer power and human reason was as important as
Turing’s paper. He was also the author of Eliza - his attempt to demonstrate in a
concrete way what was unsatisfactory about Turing’s analysis.

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ WHAT GOES ON INSIDE
‣ CONSCIOUSNESS
‣ THOUGHT

‣ WHAT GOES ON OUTSIDE
‣ BEHAVIOUR
‣ INTERACTIONS

In this talk, I want to go back to that other fork, because I too think that Turing’s
analysis is flawed and inadequate. I think that the incredible advances, the Siris
and the chat-bots and the self-driving cars, are, as far as we are actually
concerned with intelligence, a dead-end.

Like Turing, these efforts begin from the outside. They’re not really concerned with
the nature of intelligence itself, but with the challenge of creating an appearance of
it: what does intelligence look like? In narrow, limited spheres, the appearance can
be very successful, and the more successful the appearance, the more easily we
fall into using the language of intelligence around the behaviour - and into
forgetting that we are dealing merely with a simulacrum of intelligence, that is no
closer to consciousness than a stone.

I think that the more interesting question is the one that has become neglected,
that begins from the inside, that asks what lies at the heart of intelligence? Where
does consciousness arise?

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ WHAT GOES ON INSIDE
‣ CONSCIOUSNESS
‣ THOUGHT

‣ WHAT GOES ON OUTSIDE
‣ BEHAVIOUR
‣ INTERACTIONS

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

▸ We can find some of the most interesting insights into intelligence in the most
basic programming concepts.

▸ We can find their counterparts in the work of poets, writers and artists.

As programmers, I think we have the concepts and the tools to investigate this in
useful, interesting ways. In this talk I want to argue two things:

* that the programming concepts that give us the most interesting insights into
this are in fact the most basic ones

* that we can find their counterparts in the work of poets, writers and artists, and
use this work to help understand and inspire the quest into intelligence and
consciousness

For this, let’s turn to the concept of poïesis.

POÏESIS

Making

The word poetry comes from the Greek poïesis, meaning making. Its roots are in
the ancient Greek verb to make or to produce.

It was a verb, an activity, before it was a noun.

Poïesis doesn’t mean making or production in the sense of manufacture. Think of
the verbs faire or fare, in French and Italian, which mean both make and do. Or
think of the way we use make as in making friends or making love.

It’s not concerned with material or technical construction, but with a transformation
in the world; an act or process of bringing forth. In poïesis, something becomes
another kind of thing altogether - a new thing emerges.

Poetry can be considered a kind of poïesis. And I think that programming also
represents poïesis, that poets and programmers, because their work is poïesis,
making, can help us understand or at least usefully explore some quite deep
questions about ourselves; in particular, about the nature of human consciousness,
thought, the mind.

So let’s dive right into the work of programmers and poets and artists, and see
what characterises a certain kind of poïesis.

POÏESIS & PROGRAMMERS

RULE-GOVERNED PLAY

▸ rules

▸ processes

▸ play

Programmers seem to be particularly fascinated by rule-governed play, and to
respond to it strongly when they find it, in poetry, music and other art.

There are some notable writers and artists whose work and ideas speak to
programmers.

I believe it’s the way that programmers think that makes them especially ready to
understand and appreciate the intersection of rules, processes and play that
characterises these work and ideas.

Quite often, it’s really obvious that something, even if it has nothing to do with
programmers, is going to appeal to programmers: they will get it.

We could spend a lot of time discussing exactly why this is so, but I think that part
of the answer anyway is that rule-governed play takes place in systems, and that
systems appeal very much to programmers.

POÏESIS & PROGRAMMERS

SYSTEMS

▸ loops

▸ self-reference

▸ hierarchies

In fact three of the things they love best in systems are also things that are very,
very interesting outside programming.

What’s more, they are the things that make rule-governed play particularly
interesting.

They also represent some of the most basic concepts or structures in
programming, ones that determine the way programming itself works, and they
are:

loops
self-reference
hierarchies

LOOPS

Let’s start with loops.

10 PRINT "HELLO"
20 GOTO 10

Even the simplest possible loop represents power.

It doesn’t matter how trivial it is, a loop can still unleash an infinite sequence, and
the computer will try to make it real.

There are many constructs in programming, but the one that I love the best, the
one that seems most beautiful and powerful, is the loop.

Loops are perfect and simple.

But still - the fascination of GOTO 10 is rather limited. GOTO 10 is only interesting
for being infinite, rather than for anything new that comes out of it. It’s not about
anything, and it’s always the same.

So this particular loop isn’t very interesting, but when we apply loops to other
things, then they get more intriguing.

TextArc

Many years ago, W. Bradford Paley produced TextArc, an application running at
textarc.org. TextArc is beautiful and magical.

It loops over a text, and represents it, visually.

(You can try running TextArc on a modern system, but although some have
reported success on using OS X/Firefox, I have not been able to run it except in a
virtual machine running an older version of Windows.)

Here’s the text of Alice’s Adventures in Wonderland, represented in TextArc.

Here’s the word - and the character - Alice, in relation to the entire text.

We can see that Alice is at the centre of the story - literally.

Here’s the Gryphon - literally, a peripheral character.

And here is a linear sequence through the actual text.

STRUCTURE AND
METADATA

In TextArc, we don’t really get a sense anymore of the content of the work. Instead,
we get its structure, exposed by a loop, presented as metadata.

Why do structure and metadata matter?

We do lose something, when we lose the content, but we also gain something,
because it lets us see new meaning that perhaps was previously obscured.

We see who is associated with whom, or what. We can see who appears when,
with whom. We can see who dominates the story. In the case of TextArc, we can
see it, literally.

WHO’S SPEAKING TO WHOM?
STRUCTURE & METADATA

Don’t be distracted by the fact that what TextArc does is amusing and literary; it’s
also powerful and significant.

This is not lost on large corporations and government agencies, who understand
its power and significance very well.

Google and Facebook know what structure and metadata mean; they take it very
seriously.

In various countries in the world, right now or recently or perhaps simply coming
soon, governments are anxious to have legislation enacted that will give their
agencies the right to similar information about our communications and activities.

Of course, they would never do anything like eavesdrop on their citizens, recording
their conversations. That would be a terrible invasion of privacy that only an
oppressive regime would do. But they would like to know who is talking to whom…

We’re programmers; we know how much information can be found in metadata,
and how much can be done with it.

ALICE AND HAMLET

Alice is the first text offered on TextArc. You can run TextArc on any text, but the
next text listed there is Shakespeare’s Hamlet.

For some reason, Alice and Hamlet are the two texts that keep appearing in the
work of artists, and programmers, who want to explore texts in new ways.

BERNARDO
Who's there?
FRANCISCO
Nay, answer me: stand, and unfold yourself.
BERNARDO
Long live the king!
FRANCISCO
Bernardo?
BERNARDO
He.
FRANCISCO
You come most carefully upon your hour.
BERNARDO
'Tis now struck twelve; get thee to bed, Francisco.
FRANCISCO
For this relief much thanks: 'tis bitter cold,
And I am sick at heart.
BERNARDO
Have you had quiet guard?
FRANCISCO
Not a mouse stirring.
BERNARDO
Well, good night.
If you do meet Horatio and Marcellus,
The rivals of my watch, bid them make haste.
FRANCISCO
I think I hear them. Stand, ho! Who's there?
Enter HORATIO and MARCELLUS
HORATIO
Friends to this ground.
MARCELLUS

And liegemen to the Dane.
FRANCISCO
Give you good night.
MARCELLUS
O, farewell, honest soldier:
Who hath relieved you?
FRANCISCO
Bernardo has my place.
Give you good night.
Exit
MARCELLUS
Holla! Bernardo!
BERNARDO
Say,
What, is Horatio there?
HORATIO
A piece of him.
BERNARDO
Welcome, Horatio: welcome, good Marcellus.
MARCELLUS
What, has this thing appear'd again to-night?
BERNARDO
I have seen nothing.
MARCELLUS
Horatio says 'tis but our fantasy,
And will not let belief take hold of him
Touching this dreaded sight, twice seen of us:
Therefore I have entreated him along
With us to watch the minutes of this night;
That if again this apparition come,
He may approve our eyes and speak to it.

HORATIO
Tush, tush, 'twill not appear.
BERNARDO
Sit down awhile;
And let us once again assail your ears,
That are so fortified against our story
What we have two nights seen.
HORATIO
Well, sit we down,
And let us hear Bernardo speak of this.
BERNARDO
Last night of all,
When yond same star that's westward from the
pole
Had made his course to illume that part of heaven
Where now it burns, Marcellus and myself,
The bell then beating one,--
Enter Ghost
MARCELLUS
Peace, break thee off; look, where it comes again!
BERNARDO
In the same figure, like the king that's dead.
MARCELLUS
Thou art a scholar; speak to it, Horatio.
BERNARDO
Looks it not like the king? mark it, Horatio.
HORATIO
Most like: it harrows me with fear and wonder.
MARCELLUS
Question it, Horatio.

Here’s Hamlet.

1941-1989

ULISES CARRIÓN

And here is Ulises Carrión, a Mexican artist.

HAMLET FOR
TWO VOICES

ULISES CARRIÓN

I’m going to play you part of his Hamlet for two voices.

BERNARDO
Who's there?
FRANCISCO
Nay, answer me: stand, and unfold yourself.
BERNARDO
Long live the king!
FRANCISCO
Bernardo?
BERNARDO
He.
FRANCISCO
You come most carefully upon your hour.
BERNARDO
'Tis now struck twelve; get thee to bed, Francisco.
FRANCISCO
For this relief much thanks: 'tis bitter cold,
And I am sick at heart.
BERNARDO
Have you had quiet guard?
FRANCISCO
Not a mouse stirring.
BERNARDO
Well, good night.
If you do meet Horatio and Marcellus,
The rivals of my watch, bid them make haste.
FRANCISCO
I think I hear them. Stand, ho! Who's there?
Enter HORATIO and MARCELLUS
HORATIO
Friends to this ground.
MARCELLUS

And liegemen to the Dane.
FRANCISCO
Give you good night.
MARCELLUS
O, farewell, honest soldier:
Who hath relieved you?
FRANCISCO
Bernardo has my place.
Give you good night.
Exit
MARCELLUS
Holla! Bernardo!
BERNARDO
Say,
What, is Horatio there?
HORATIO
A piece of him.
BERNARDO
Welcome, Horatio: welcome, good Marcellus.
MARCELLUS
What, has this thing appear'd again to-night?
BERNARDO
I have seen nothing.
MARCELLUS
Horatio says 'tis but our fantasy,
And will not let belief take hold of him
Touching this dreaded sight, twice seen of us:
Therefore I have entreated him along
With us to watch the minutes of this night;
That if again this apparition come,
He may approve our eyes and speak to it.

HORATIO
Tush, tush, 'twill not appear.
BERNARDO
Sit down awhile;
And let us once again assail your ears,
That are so fortified against our story
What we have two nights seen.
HORATIO
Well, sit we down,
And let us hear Bernardo speak of this.
BERNARDO
Last night of all,
When yond same star that's westward from the
pole
Had made his course to illume that part of heaven
Where now it burns, Marcellus and myself,
The bell then beating one,--
Enter Ghost
MARCELLUS
Peace, break thee off; look, where it comes again!
BERNARDO
In the same figure, like the king that's dead.
MARCELLUS
Thou art a scholar; speak to it, Horatio.
BERNARDO
Looks it not like the king? mark it, Horatio.
HORATIO
Most like: it harrows me with fear and wonder.
MARCELLUS
Question it, Horatio.

BERNARDO
Who's there?
FRANCISCO
Nay, answer me: stand, and unfold yourself.
BERNARDO
Long live the king!
FRANCISCO
Bernardo?
BERNARDO
He.
FRANCISCO
You come most carefully upon your hour.
BERNARDO
'Tis now struck twelve; get thee to bed, Francisco.
FRANCISCO
For this relief much thanks: 'tis bitter cold,
And I am sick at heart.
BERNARDO
Have you had quiet guard?
FRANCISCO
Not a mouse stirring.
BERNARDO
Well, good night.
If you do meet Horatio and Marcellus,
The rivals of my watch, bid them make haste.
FRANCISCO
I think I hear them. Stand, ho! Who's there?
Enter HORATIO and MARCELLUS
HORATIO
Friends to this ground.
MARCELLUS

And liegemen to the Dane.
FRANCISCO
Give you good night.
MARCELLUS
O, farewell, honest soldier:
Who hath relieved you?
FRANCISCO
Bernardo has my place.
Give you good night.
Exit
MARCELLUS
Holla! Bernardo!
BERNARDO
Say,
What, is Horatio there?
HORATIO
A piece of him.
BERNARDO
Welcome, Horatio: welcome, good Marcellus.
MARCELLUS
What, has this thing appear'd again to-night?
BERNARDO
I have seen nothing.
MARCELLUS
Horatio says 'tis but our fantasy,
And will not let belief take hold of him
Touching this dreaded sight, twice seen of us:
Therefore I have entreated him along
With us to watch the minutes of this night;
That if again this apparition come,
He may approve our eyes and speak to it.

HORATIO
Tush, tush, 'twill not appear.
BERNARDO
Sit down awhile;
And let us once again assail your ears,
That are so fortified against our story
What we have two nights seen.
HORATIO
Well, sit we down,
And let us hear Bernardo speak of this.
BERNARDO
Last night of all,
When yond same star that's westward from the
pole
Had made his course to illume that part of heaven
Where now it burns, Marcellus and myself,
The bell then beating one,--
Enter Ghost
MARCELLUS
Peace, break thee off; look, where it comes again!
BERNARDO
In the same figure, like the king that's dead.
MARCELLUS
Thou art a scholar; speak to it, Horatio.
BERNARDO
Looks it not like the king? mark it, Horatio.
HORATIO
Most like: it harrows me with fear and wonder.
MARCELLUS
Question it, Horatio.

BERNARDO
Who's there?
FRANCISCO
Nay, answer me: stand, and unfold yourself.
BERNARDO
Long live the king!
FRANCISCO
Bernardo?
BERNARDO
He.
FRANCISCO
You come most carefully upon your hour.
BERNARDO
'Tis now struck twelve; get thee to bed, Francisco.
FRANCISCO
For this relief much thanks: 'tis bitter cold,
And I am sick at heart.
BERNARDO
Have you had quiet guard?
FRANCISCO
Not a mouse stirring.
BERNARDO
Well, good night.
If you do meet Horatio and Marcellus,
The rivals of my watch, bid them make haste.
FRANCISCO
I think I hear them. Stand, ho! Who's there?
Enter HORATIO and MARCELLUS
HORATIO
Friends to this ground.
MARCELLUS

And liegemen to the Dane.
FRANCISCO
Give you good night.
MARCELLUS
O, farewell, honest soldier:
Who hath relieved you?
FRANCISCO
Bernardo has my place.
Give you good night.
Exit
MARCELLUS
Holla! Bernardo!
BERNARDO
Say,
What, is Horatio there?
HORATIO
A piece of him.
BERNARDO
Welcome, Horatio: welcome, good Marcellus.
MARCELLUS
What, has this thing appear'd again to-night?
BERNARDO
I have seen nothing.
MARCELLUS
Horatio says 'tis but our fantasy,
And will not let belief take hold of him
Touching this dreaded sight, twice seen of us:
Therefore I have entreated him along
With us to watch the minutes of this night;
That if again this apparition come,
He may approve our eyes and speak to it.

HORATIO
Tush, tush, 'twill not appear.
BERNARDO
Sit down awhile;
And let us once again assail your ears,
That are so fortified against our story
What we have two nights seen.
HORATIO
Well, sit we down,
And let us hear Bernardo speak of this.
BERNARDO
Last night of all,
When yond same star that's westward from the
pole
Had made his course to illume that part of heaven
Where now it burns, Marcellus and myself,
The bell then beating one,--
Enter Ghost
MARCELLUS
Peace, break thee off; look, where it comes again!
BERNARDO
In the same figure, like the king that's dead.
MARCELLUS
Thou art a scholar; speak to it, Horatio.
BERNARDO
Looks it not like the king? mark it, Horatio.
HORATIO
Most like: it harrows me with fear and wonder.
MARCELLUS
Question it, Horatio.

And here’s Ulises Carrión’s “Hamlet for Two Voices”:

• audio file: https://www.dropbox.com/s/vyi3psnt0da2hu0/Hamlet%20for%20two
%20voices.mp3?dl=0 (complete version)

• available from https://boomkat.com/products/the-poet-s-tongue

“Hamlet for Two Voices” is funny. I think it’s hilarious. But it’s not just funny. What
do we learn from this?

Ulises Carrión’s performance is a new interpretation of Hamlet, a Hamlet for two
voices, left and right. It’s the whole of Hamlet - without any content. Only the
structure remains.

So what are we left with? What have we lost?

It’s true, you won’t know from this that Hamlet is about revenge, murder or desire.
You won’t know that Hamlet is a prince, or that the story is set in Denmark.

But, there is a lot to learn.

We learn who is still around at the end (after all, if you’re a character in a
Shakespeare tragedy there’s no guarantee you’ll still be alive at the end of the
story).

We can discover whom the story revolves around, who dominates conversations,
who hangs around with whom. We can guess who is conspiring with whom (just
like a government agency…).

We have lost something, we have thrown some information away, but maybe we
expose some previously-hidden information in doing so.

THE PROGRAMMER’S
SOUL

Most people react to this the same way when they hear it for the first time: what on
earth is this?

But then it divides the world into programmers and non-programmers.

Non-programmers ask What’s the point? They are baffled, at best, or worse,
irritated. Some people are really annoyed by it.

But the reaction of programmers is different: they get it.

(Of course it’s possible that a programmer won’t like it, or that a non-programmer
will get it instantly - what it really does is divide the world into the people who have
the soul of a programmer, and those who don’t.)

Programmers understand this kind of thing. Programmers understand loops,
what’s important about meta-data, and how to recognise a key-value pair when
they see one.

KEY/VALUE PAIRS

Hamlet for two voices, in Python: https://gist.github.com/evildmp/
7f4702efac3a164629dd9c31bfff8ee4

PLAY
FUN WITH LANGUAGE

Computers are the perfect tools for this sort of thing, for exploring, analysing,
discovering texts and language.

If you’re interested in this, it’s very accessible and easy to explore further.

What could you discover with a simple program? Could you extract the
punctuation from a text, and recognise the author by the punctuation? Or by the
whitespace?

What else is there to learn by looping over text in this way?

OULIPO
OUVROIR DE LITTÉRATURE POTENTIELLE

In fact there is a whole field of experimental literature that does this, to analyse
texts, synthesise them, and deconstruct them.

There’s the Oulipo group of writers, mathematicians, artists, which includes such
figures as Italo Calvino and Paul Fournel. Their interest in structure, meta-data and
other “non-content” of texts makes them especially intriguing for programmers,
and their work is ripe for exploration in programming.

MICROSERFS
DOUGLAS COUPLAND

And you don’t have to go to experimental literature.

Here are a couple of pages from Microserfs, the 1994 novel by Douglas Coupland
about programmers, with consonants and vowels lifted out from each other.

POETS & PROGRAMMERS

PLAY

▸ the looseness in a mechanical system

▸ play only exists within rules and constraints

▸ even very precise systems must have play in them

▸ the rules and connections of language leave room for play

▸ just like artists and writers, programmers like to play with and exploit play

We can play endless games with texts of this kind.

We’re referring to games, and talk about playing, and some of it is a lot of fun, but
it’s also serious.

Play doesn’t just refer to fun. Play is the looseness in a mechanical connection, the
extent to which one side of a link is free and undetermined by the other.

It’s also significant to note that play in this sense depends upon the linkage, the
connection, the constraint - if there were no constraint at all, there wouldn’t be
play, there’d be nothing, just as if there were no looseness in the connection at all.

Play only exists in the context of constraint and rules, and we find it in the
connections, where the joints permit movement.

If there were no play at all, the entire mechanical system would be locked solid.

So, the rules and connections of language are just open and loose enough to allow
both for rigorous meaning, and play, within the same system.

Play, of this kind, is also something that’s enjoyed and exploited by artists and
writers and programmers.

We’ve seen some examples of looping, but this kind of play becomes even more
interesting when the looping becomes self-referential.

SELF-REFERENTIAL
LOOPS

FIRST SPANISH
LESSON

ULISES CARRIÓN

Here is Ulises Carrión again, with his “First Spanish Lesson”.

ULISES CARRIÓN

FIRST SPANISH LESSON

▸ Es español. 
It is Spanish.

▸ ¿Es español? Sí, es español.  
Is it Spanish? Yes, it is Spanish.

▸ ¿Es 'ese' español? Sí, 'ese' es español. 
Is ‘that’ Spanish? Yes, 'that’ is Spanish.

▸ ¿Es 'ese español' español? Sí, 'ese
español' es español. 
Is 'that Spaniard' Spanish? Yes, 'that
Spaniard' is Spanish.

▸ ¿Es ‘ese es español’ español? Sí, ‘ese
es español’ es español. 
Is "that is Spanish" Spanish? Yes, ‘that
is Spanish’ is Spanish.

▸ ¿Es 'si es español' español? Sí, 'si es
español' es español. 
Is 'if it is Spanish' Spanish?' Yes, 'if it is
Spanish' is Spanish

▸ ¿Es 'sí, es español' español? Sí, 'Sí, es
español' es español. 
Is 'yes, it is Spanish' Spanish?' Yes,
'yes, it is Spanish' is Spanish.

▸ ¿Es 'si ese' español? No, 'si ese' no es
español. 
Is ‘if that' Spanish? No, 'if that' is not
Spanish.

▸ ¿Es "ese no es español" español? Sí,
"ese no es español" es español. 
Is “that is not Spanish?" Spanish? Yes,
"that is not Spanish" is Spanish.

▸ ¿Es 'españoles' español? Sí,
'españoles' es español. 
Is 'Spaniards' Spanish? Yes, 'Spaniards'
is Spanish.

▸ ¿Es 'es españoles' español? No, 'es
españoles' no es español. 
Is “Is Spaniards' Spanish? No, 'Is
Spaniards' is not Spanish.

• audio file: https://www.dropbox.com/s/zcvw2ouks4u1jbi/Poet%27s%20tongue
%20-%20First%20Spanish%20Lesson.mp3?dl=0 (excerpt, 4 minutes 19
seconds)

• available from https://boomkat.com/products/the-poet-s-tongue

ULISES CARRIÓN

FIRST SPANISH LESSON

▸ Es español. 
It is Spanish.

▸ ¿Es español? Sí, es español.  
Is it Spanish? Yes, it is Spanish.

▸ ¿Es 'ese' español? Sí, 'ese' es español. 
Is ‘that’ Spanish? Yes, 'that’ is Spanish.

▸ ¿Es 'ese español' español? Sí, 'ese
español' es español. 
Is 'that Spaniard' Spanish? Yes, 'that
Spaniard' is Spanish.

▸ ¿Es ‘ese es español’ español? Sí, ‘ese
es español’ es español. 
Is "that is Spanish" Spanish? Yes, ‘that
is Spanish’ is Spanish.

▸ ¿Es 'si es español' español? Sí, 'si es
español' es español. 
Is 'if it is Spanish' Spanish?' Yes, 'if it is
Spanish' is Spanish

▸ ¿Es 'sí, es español' español? Sí, 'Sí, es
español' es español. 
Is 'yes, it is Spanish' Spanish?' Yes,
'yes, it is Spanish' is Spanish.

▸ ¿Es 'si ese' español? No, 'si ese' no es
español. 
Is ‘if that' Spanish? No, 'if that' is not
Spanish.

▸ ¿Es "ese no es español" español? Sí,
"ese no es español" es español. 
Is “that is not Spanish?" Spanish? Yes,
"that is not Spanish" is Spanish.

▸ ¿Es 'españoles' español? Sí,
'españoles' es español. 
Is 'Spaniards' Spanish? Yes, 'Spaniards'
is Spanish.

▸ ¿Es 'es españoles' español? No, 'es
españoles' no es español. 
Is “Is Spaniards' Spanish? No, 'Is
Spaniards' is not Spanish.

ULISES CARRIÓN

FIRST SPANISH LESSON

▸ Es español. 
It is Spanish.

▸ ¿Es español? Sí, es español.  
Is it Spanish? Yes, it is Spanish.

▸ ¿Es 'ese' español? Sí, 'ese' es español. 
Is ‘that’ Spanish? Yes, 'that’ is Spanish.

▸ ¿Es 'ese español' español? Sí, 'ese
español' es español. 
Is 'that Spaniard' Spanish? Yes, 'that
Spaniard' is Spanish.

▸ ¿Es ‘ese es español’ español? Sí, ‘ese
es español’ es español. 
Is "that is Spanish" Spanish? Yes, ‘that
is Spanish’ is Spanish.

▸ ¿Es 'si es español' español? Sí, 'si es
español' es español. 
Is 'if it is Spanish' Spanish?' Yes, 'if it is
Spanish' is Spanish

▸ ¿Es 'sí, es español' español? Sí, 'Sí, es
español' es español. 
Is 'yes, it is Spanish' Spanish?' Yes,
'yes, it is Spanish' is Spanish.

▸ ¿Es 'si ese' español? No, 'si ese' no es
español. 
Is ‘if that' Spanish? No, 'if that' is not
Spanish.

▸ ¿Es "ese no es español" español? Sí,
"ese no es español" es español. 
Is “that is not Spanish?" Spanish? Yes,
"that is not Spanish" is Spanish.

▸ ¿Es 'españoles' español? Sí,
'españoles' es español. 
Is 'Spaniards' Spanish? Yes, 'Spaniards'
is Spanish.

▸ ¿Es 'es españoles' español? No, 'es
españoles' no es español. 
Is “Is Spaniards' Spanish? No, 'Is
Spaniards' is not Spanish.

This is language about language. It’s looping over its own structures, recursing on
itself. It’s language eating language.

Usually, when something consumes itself it reduces to nothingness: in this case,
something new and magical comes out.

It’s a perfect example of playing with rules and processes. It’s the kind of thing
programmers feel deep in their souls.

In a way, this is a program, following its own internal logic, obeying its own rules.

What it makes me think is:

FIRST PYTHON LESSON

Could we create a First Python lesson?

Could a Python programme consume and give birth to itself, regenerating and
answering itself in the same way?

FIRST PYTHON LESSON

WE HAVE THE TECHNOLOGY

eval(compile(string, '<string>', 'exec'))

We have the technology.

It’s actually fairly simply to get Python to consume itself, and decide whether it
really is Python…

OUROBOROS
THE SNAKE THAT EATS ITS
OWN TAIL

It’s a kind of impossible magic, to make something that eats itself, but it’s a very
old concept.

Here is the ouroboros, the snake that eats its own tail.

It visits scientists in their dreams, as you will know if you have studied chemistry:
August Kekule’s solution for the problem of the benzene molecule came to him in a
reverie, after years of studying carbon-carbon bonds: a dream of snakes holding
their own tails.

But the ouroboros is also an ancient symbol of renewal and regeneration in many
cultures.

Programmers as much as artists are fascinated by what happens when a self-
reflecting process loops, but I think that programmers are particularly lucky,
because we have the perfect tools with which to explore this.

The impossible magic in this is not that the snake simply bites its own tail. Any
half-witted dog could do that. The magic lies in something that eats itself and
sustains itself, from which something emerges, something new, that wasn’t there
before.

It happens in Ulises Carrión. Something new comes out of the loop; not just
something new, but a new kind of thing altogether. This is the poïesis we’re in
search of.

Here’s another representation of the ouroboros, this time by M.C. Escher, who was
also fascinated by loops and self-reference.

In this wood-block print, some interesting things are going on.

Where does this loop begin?

How many loops is it? Is it one loop? But then it’s made out of four distinct bands,
that spiral around each other. Does that make it four loops, or even five loops?

It’s actually looping on two different levels, and you have to choose which loops
you see, or hold in your mind when you look at it.

There’s a hierarchy of looping here; the looping crosses the hierarchy.

HIERARCHIES OF SELF-
REFERENTIAL LOOPS

And now we can bring in hierarchy, the third of our key programming concepts.

GÖDEL, ESCHER, BACH:  
AN ETERNAL GOLDEN BRAID

DOUGLAS HOFSTADTER

Here’s Douglas Hofstadter, one of the most interesting thinkers you could ever
hope to read a book by.

He’s interested in hierarchies, multiple, tangled hierarchies, of self-referential loops.

His best-known book, Gödel, Escher, Bach, explores art, music, logic and
consciousness. It’s an utterly remarkable book, driven by a fascination with loops
and self-reflecting processes.

In the book, he’s in search of the ultimate in self-reflection or self-reference, our
own human self-consciousness, subjectivity itself.

The book itself loops, recurses, reflects itself and its structure. Ultimately,
Hofstadter is interested in what emerges from simple processes - loops.

By the way, it’s a work whose humour and sense of aesthetics will appeal very
naturally to programmers, because Hofstadter certainly has the soul of a
programmer.

IT ALWAYS TAKES LONGER THAN YOU
EXPECT, EVEN WHEN YOU TAKE INTO
ACCOUNT HOFSTADTER'S LAW.

Douglas Hofstadter

HOFSTADTER’S LAW Here’s Hofstadter’s Law.

RIVER EROSION

COMPLEX STRUCTURES
FROM SIMPLE PROCESSES

Hofstadter is interested in the emergent properties of systems.

An emergent property is one that arises in a system, but can’t be found anywhere
in its components.

Sometimes, the property is geometrical order, as in the example above where
water erosion has produced this remarkable effect.

The structure you see is not a structure in the rock itself. There’s no hexagonal
structural arrangement in the rock. You won’t find hexagonal shapes anywhere in
the rock.

What you see is a repeated effect of water on the rock; water that itself is affected
by the rock that it affects… Together, the water and the rock form a system, and
though the system is composed of its parts, the parts, lower in the system’s
hierarchy are themselves acted upon by the system that they are part of.

The hexagonal shapes emerged - unexpectedly - from the system.

INSECT COLUMNS

COMPLEX STRUCTURES
FROM SIMPLE PROCESSES

Another example in nature might be an ant column.

“Column organisation” is nowhere to be found in the behaviour of individual ants,
and cannot even be predicted from it, but yet, in the system of ant interactions, a
column, a new system that didn’t exist before, emerges.

BRIDGET RILEY

COMPLEX STRUCTURES
FROM SIMPLE PROCESSES

Emergence can be found in art, as in the work of Bridget Riley, where simply
repeatedly following a line produces, through the natural free play of the activity,
something that is not in any of its components. The pattern that is the whole
emerges.

DEEP DREAM

COMPLEX STRUCTURES
FROM SIMPLE PROCESSES

Or Google’s Deep Dream, that uses iterating pattern searching and generation
algorithms, matching parts to wholes, crossing levels of hierarchy, and from which
new levels of significance once again emerge.

EVOLUTION
COMPLEX STRUCTURES
FROM SIMPLE PROCESSES

Evolution - natural selection in nature - itself can be considered an emergent
property, something that comes out of basic chemical or biological processes.

And importantly, because there are multiple levels of hierarchy in these systems,
other properties in nature are in turn themselves emergent features of evolution.

There are numerous behaviours observed in nature whose explanations have been
sought in emergence. Co-operative behaviour is one of those. Why is there co-
operation within and even between species, when it would seem that at the level of
individuals there is no benefit in co-operation?

The graph above is from a Python library, Axelrod, and it shows the success over
time of successive generations of strategies in a tournament of the iterated
prisoner’s dilemma.

AXELROD

THE ITERATED PRISONER’S DILEMMA

▸ search for the secret of co-operation in evolution

▸ first tournament held in 1980

▸ selfish strategies did poorly

▸ implemented as a Python library in 2015 by Vincent Knight, Cardiff University

▸ http://axelrod.readthedocs.org

▸ https://github.com/Axelrod-Python

The iterated prisoner’s dilemma is a search for the secret of co-operation in
evolution.

The first tournament was held in 1980, by Robert Axelrod, a political scientist.

Perhaps surprisingly, selfish strategies in that tournament did poorly.

Axelrod was implemented as a Python library in 2015 by Vincent Knight at Cardiff
University.

• http://axelrod.readthedocs.org

• https://github.com/Axelrod-Python

axelrod.readthedocs.org

GÖDEL, ESCHER, BACH
DOUGLAS HOFSTADTER

Hofstadter argues that consciousness is an emergent property, that arises from the
systems in the brain.

We discussed loops, and then the magic that seems to follow when loops become
self-referential, and something new springs out of them; Hofstadter adds
hierarchy to this, so that we have loops within loops, loops at different levels in the
system.

Hofstadter’s thesis is that hierarchies of self-reflecting or self-similar loops, that
repeat themselves at different levels, lie at the heart of cognition and
consciousness; that the human brain’s neurological processes are themselves
based on loops, self-reference, logic and play.

Consciousness, he says, is an emergent property - it doesn’t exist in the neurons
of the brain. We won’t find it by looking at the components, we need instead to
understand the system, what happens in its loops.

Is this the origin of consciousness? Are self-referring hierarchies of loops the secret
of cognition?

Neurons and electrical signals in the brain are not consciousness, they are merely
physical processes, and we will never find consciousness in them, however hard
we look. Consciousness won’t be found there, because it belongs to a different
dimension from those things.

But can these loops at these lower neural, electrical, chemical levels in the system
produce something that’s beyond themselves, something that belongs to another
dimension, just like the three dimensional hands that not only have appeared out of
that lower two-dimensional level, but now, in turn, feed back both into that lower
level, and into each other?

Can it be a system that nourishes itself, apparently impossibly, like the snake that
eats its own tail?

Hofstadter thinks so; in fact, one of his later books is actually called I am a strange
loop - he argues that the I of consciousness is this process of looping and self-
referring across hierarchies.

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ WHAT GOES ON INSIDE
‣ CONSCIOUSNESS
‣ THOUGHT

‣ WHAT GOES ON OUTSIDE
‣ BEHAVIOUR
‣ INTERACTIONS

Now we are talking about intelligence and programming in a very different way
from the one that has followed Turing; we are talking in ways that do, I think, make
it possible to ask meaningful questions about whether machines could think.

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ PLAY
‣ RULES
‣ POÏESIS

‣ BIG DATA
‣ HUGE ONTOLOGIES
‣ BRUTE FORCE

It raises the possibility of an approach into cognition research and artificial
intelligence that’s quite unlike some of the ones we see at the moment, that are
premised on brute force, big data, huge ontologies.

Instead, it begins with the simplest of tools, the ones that programmers in fact
enjoy playing with, and brings in ideas like play, analogy-making, processes, rules -
poïesis.

It approaches the problem of consciousness as poïesis, as a process that’s at the
same time a transformative activity, that brings forth something new out of the
world. It’s intellectually compelling, and the opportunities for exploring it are within
the reach of even the most novice Python programmer.

MINDS & MACHINES & PYTHON

THE QUEST FOR ARTIFICIAL INTELLIGENCE

‣ PLAY
‣ RULES
‣ POÏESIS

‣ BIG DATA
‣ HUGE ONTOLOGIES
‣ BRUTE FORCE

THE QUEST FOR
ARTIFICIAL INTELLIGENCE

It gives us a way to grasp this quest that seems very rich and valuable and
illuminating, and rich for exploration - especially by us, by programmers.

THE QUEST FOR
INTELLIGENCE

It does something even more important: I think it gives us a way to look at and
understand our own intelligence, our consciousness.

The question of whether Hofstadter is right, in the end, isn’t that important.

POETS & PROGRAMMERS & PYTHON

REFERENCES

▸ textarc.org

▸ Ulises Carrión 
“Hamlet for two voice” 
“First Spanish lesson”

▸ Oulipo

▸ Ouroboros

▸ Axelrod, the Iterated Prisoner’s Dilemma

▸ Douglas Hofstadter: Gödel, Escher, Bach

It doesn’t matter for us whether Hofstadter’s on the right track about the nature of
consciousness, and cognition.

These ideas are so beautiful, powerful and compelling that we should wrestle with
them.

Certainly, it seems more beautiful and elegant than the approach that has
produced things like the chatbot Tay, by Microsoft, that after 24 hours on Twitter
turned into a Hitler-loving sex-maniac.

The really important and interesting things is to have these ideas and exchanges,
and to think about these things.

And something that delights me personally, that makes me very happy to be in the
company of programmers, is that I find that the poets and writers and artists that
fascinate me, and the things that fascinate me in programming, come back,
somehow, in another pleasing circle, to the philosophical questions that have been
with me for decades.

ANY QUESTIONS?
THANK YOU

POETS & PROGRAMMERS & PYTHON

DANIELE PROCIDA

▸ daniele.procida@divio.com

▸ EvilDMP on IRC, GitHub, Twitter etc

▸ “Documentation-driven development” 
Thursday: 14.00

