europython
Edinburgh 23-23 July

2018

i

Microservices and Serverless in
Python projects

José Manuel Ortega
Europython 2018
@jmortegac

Agenda

* Microservices in python

*|Introducing Serverless and Function as a Service

* Python frameworks for AWS

* AWS Lambda functions with zappa and chalice

* Deploy AWS lambda functions from aws
console

Microservices vs Serverless

® serverless ® microservices + Afadi s
Término de busqueda Término de busqueda figairicomparacioln
Todo el mundo ¥ Ultimos 5 afios ¥ Todas las categorias ¥ Busqueda web ¥

Interés a lo largo del tiempo

| €=

<> <

No

~hr 2015 Q ane 201
S abr. 2015 8 ene. 201

Media 30 jun

Microservices and Serverless in Python projects 3

Microservices

Tornado g‘&

Twisted

Microservices and Serverless in Python projects

Asynchronous calls with asyncio and aiohttp

import asyncio
import aiohttp

@asyncio.coroutine

def fetch_page(url):
response = yield from aiohttp.request('GET', url)
body = yield from response.read()
return body

content = asyncio.get_event_loop().run_until_complete(

fetch_page('http://python.org'))
print(content)

Microservices and Serverless in Python projects 5

REST API Development

django

Flask

S\ web development,
S P one drop at a time

Performance
8% less memory

6% faster response times
django

Flask -

N web development, o work
el one drop at a time

Microservices with graphd|

Web APP Mobile APP Other Service

@ GraphQL as
APIl Gateway

@ { REST } @ { REST } @ { REST } @

Product Payment User Inventory

Microservices and Serverless in Python projects 8

GraphQL python’

(j Glsp;n’ethon

N
.
Database

django-——

Message Brokers

EaRabbit

Or d
&S redis

~

Tasksfor
celery to Iecute.
4 X
8
events '
events g <
A\ y
Celery Workers

Microservices and Serverless in Python projects

11

Distributed Messaging

ZeroMQ \zero-em-queue\, \@MQ\:

) Connect your code in any language, on any platform.

Carries messages across inproc, IPC, TCP, TIPC, multicast.
Smart patterns like pub-sub, push-pull, and router-dealer.
High-speed asynchronous I/O engines, in a tiny library.
Backed by a large and active open source community.
Supports every modern language and platform.

Build any architecture: centralized, distributed, small, or large.
Free software with full commercial support.

[SRSRORORORORORS]

Microservices and Serverless in Python projects 12

_context = zmg.Context ()
_publisher = context.socket (zmg.PUB)
url = 'tep://{}:4{}" .Tormat (HOST ; PORT)

ldef publish message (message):

] Ernys
_publisher.bind(url)
time.sleep(l)
myjson = Jjson.dumps (message)
. _publisher.send (myjson)

] except Exception as e:
~ print "error {}".format (e)
] finally:

= _publisher.unbind(url)

SERVER

Microservices and Serverless in Python projects

13

lclass ZClient (object):

k% 3

def

def

__name == ' main
= ZCllent()

Z3

iniy. . (self host=HOST, port=PORT):

mmn '—‘_,_ g BCNTL :{ __:’:_ :’“"_ l_ “:%l mmn
self. host = host ‘ LI E N I
self.port = port

self. context = zmqg.Context ()
self. subscriber = self. context.socket (zmg.SUB)

"~ ‘[

print Client Initiated"”

receive message (self):

""hStart receiving messages"""

print "receive message"

self. subscriber.connect('tcp://{}:{}"'.format(self.host, self.port))

self._subscriber.setsockopt(zmq.SUBSCRIBE, o st

while True:
print 1 ning on tcp://{}:{}"'.format (self.host, self.port)
message = self. subscriber.recv()
print message
logging.info (' {} . . format (message, time.strftime("3Y-

3+
- =

}l.

|‘ D

0‘.0

=
|
o\@
Q.
\O

H:$M")))

zs.receive message ()

Microservices and Serverless in Python projects

14

Microservices benefits

*Separation of concerns

*Services are decoupled from each other
* Managing smaller projects

* More scaling and deployment options

Serverless

Since the release of AWS Lambda (and others that have followed), all the rage
has been about serverless architectures. These allow microservices to be
deployed in the cloud, in a fully managed environment where one doesn't have to
care about managing any server, but is assigned stateless, ephemeral computing
containers that are fully managed by a provider. With this paradigm, events (such as
a traffic spike) can trigger the execution of more of these containers and therefore
give the possibility to handle “infinite” horizontal scaling.

Microservices and Serverless in Python projects

16

Serverless architecture

*FaaSs - Function as a Service
* Fully managed computing
* Provisioning
* Scalability
* Monitoring
* Logging
* Deploy your code
* Pay only for actual usage

Microservices and Serverless in Python projects 17

Serverless architecture

Upload your code to AWS
Lambda

AWS
SERVICES

HTTP
ENDPOINTS

MOBILE APPS

Set up your code to trigger from other AWS
services, HTTP endpoints, or in-app activity

Lambda runs your code only when triggered, Pay just for the compute time you use

using only the compute resources needed

Microservices and Serverless in Python projects

18

Serverless uses cases

> REST API
* Stateless services and microservices
* Suitable for Chat bots
> Events
* File processing (S3 event) & Data ingestion
* Data/Stream processing
* Incidents handling (CloudWatch event log)
°loT
> Scheduled tasks
* Monitoring, load testing
* Periodical jobs

19

Processing multimedias Serving multimedias

Elastic Load O .‘n .'n
Balancer @ ol

L
ﬁMaster AutoScaléd TServers

(EC2/Spot instances)

AWS Lambda

>

S3 Pending

I
&

Uploaders

Microservices and Serverless in Python projects 20

Serverless benefits

*No server management

* Automatic scaling and load balancing

* Lower infrastructure costs

* Flexibility and high availability
*|nfrastructure managed by service provider

Serverless drawbacks

* The tools around the deployment automation of
serverless functions are still in development.

*There is no control over containers when the
execution environments are created or
destroyed

*Debugging, Deploying and monitoring

22

Cloud providers

wiramazon
s AWS 1F webservices
* Microsoft Azure

*Cloud platform &% Coenwhisk”
*OpenWhisk(OS)

e Kubeless(OS) @ Kubeless

2

Google Cloud Platform

Aws lambda

Amazon
DynamoDB
Messages Data Store

Amazon S3
Static Content/Chat Web App
L

Web client 41 ~
End user g1
Amazon API Gateway AWS Lambda
REST Interface Backend Logic

7

Microservices and Serverless in Python projects 24

Synchronous (push) Asynchronous (event)

t . Amazon
t APl Gateway

order

AWS Lambda AWS Lambda
function functhion

- reqs

Aws lambda functions

=
RequestResponse
function
invocation
>

V

/
(
I
I
I
I
I
I
|
|
I

A

-

e

I
|
I
|
|
|
\

Event

.

—————— — — —

[Context]

- _J
4)
Result
N Y

———— — — — — — —

—

Function

=

- G G . G G G G G G G S — — — — —

Microservices and Serverless in Python projects

26

Aws lambda functions

def lambda_handler(event, context):
""HEntry point.

event: AWS Lambda uses this parameter to pass 1in
event data to the handler.

context: AWS Lambda uses this parameter to provide
runtime information to your handler.

return

Microservices and Serverless in Python projects 27

Create lambda function with awscli

$ aws lambda create-function \

--region eu-west-1 \

--function-name MyHandler\

--zip-file fileb://handler.zip \

--role arn:aws:iam:. XXX:role/MyLambdaRole \
--vpc-config Subnetlds=XXX,SecurityGrouplds=XXX\
--handler handler.handler \

--runtime python3.6 \

--profile personal \

--timeout 10\

--memory-size 512

Microservices and Serverless in Python projects 28

Code Configuration Triggers Tags Monitoring

The deployment package of your Lambda function "helloworld-dev" is too large to enable inline code editing. However, you can still invoke your
function right now.

Code entry type

~ Upload a .ZIP file v

Function package*
A upload

For files larger than 10 MB, consider uploading via S3.

Environment variables

You can define Environment Variables as key-value pairs that are accessible from your function code. These are useful to store configuration settings without the need to
change function code. Learn more.

Key Value Remove

Enable encryption helpers
For storing sensitive information, we recommend encrypting values using KMS and the console's encryption helpers.

L

Microservices and Serverless in Python projects .

Code Configuration Triggers Tags Monitoring

Basic information

Runtime
Python 3.6 v
Handler
The filename.handler-method value in your function. For example, "main.handler” would call the handler method defined
in main.py.

handler.lambda_handler

Role
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn
more about Lambda execution roles.

Choose an existing role v

Existing role
You may use an existing role with this function. Note that the role must be assumable by Lambda and must have
Cloudwatch Logs permissions.

helloworld-dev-ZappalambdaExecutionRole v

Description

Zappa Deployment

Microservices and Serverless in Python projects .

Frameworks adWs

- = serverless

Lambdify

Programmable AWS Lambda for Python

View the Project on GitHub

ZhukovAlexander/lambdify

pyt h O n -A Chal ice ZIPFile TARBall GitHub

Microservices and Serverless in Python projects 31

Amazon API Lambda
Gateway function

~= serverless i Docs

The way cloud should be.

Toolkit «

Community «

Blog

Serverless is your toolkit for deploying and operating
serverless architectures. Focus on your application,

not your infrastructure.

Quick Start Docs

Sign Up

Enterprise

Install serverless globally
$ npm install serverless -g

Login to your Serverless account

$ serverless login

Create a serverless function
$ serverless create --template hello-world

Deploy to cloud provider
$ serverless deploy

Function deployed! Trigger with live url

$ http://xyz.amazonaws.com/hello-world

Microservices and Serverless in Python projects

33

Zappa architecture

Zappa

Deploy your WSGI apps on AWS
Lambda

b cd demo
“/demo ls

mu_app.pu zappa_settings. json

“/demo § source env/bin/activate
(env)™/demo cat mu_app.pu
from flask import Flask
app = Flask(__name__)
@app.routel'/")
def hello():

return 'Hello, from Zappa!’n’

if __name__ == '__main__":
app.run()

(env) ™ /demo cat zappa_settings. json
{

"dev": {
"s3_bucket": "Imbda",

"app_function": "mu_app.app".

"parameter_depth": 1
K

3
(env)™/demo zappa deplouy dev
Packaging project as zip...
Uploading zip (5.8MiB). ..
Creating API Gateway routes. .
86% |

| 82/95 [@0:084<008:064,

17.85it/s]

35

=» plip install zappa
= zappa 1init

I I S S
- H—E—

—l -u=- _— .— -F-

I 1] |l || i | — L L L_l

Welcome to Zappa!

-» zappa deploy

Welcome to Zappa!

Zappa is a system for running server-less Python web applications on AWS Lambda and AWS API Gateway.
This "init" command will help you create and configure your new Zappa deployment.
Let's get started!

Your Zappa configuration can support multiple production stages, like 'dev', 'staging', and 'production’.
What do you want to call this environment (default 'dev'):

AWS Lambda and API Gateway are only available in certain regions. Let's check to make sure you have a profile se
t up in one that will work.
We found the following profiles: default, adsk forge2?, and adsk forge. Which would you like us to use? (default

'default'):

Your Zappa deployments will need to be uploaded to a private S3 bucket.
If you don't have a bucket yet, we'll create one for you too.
What do you want call your bucket? (default 'zappa-68fz81bc@'):

It looks like this 1s a Flask application.

What's the modular path to your app's function?

This will likely be something like 'your_module.app'.
We discovered: app.app

Where 1s your app's function? (default 'app.app'):

"app_function”: "app.app”,

‘aws_region’: "eu-west-1",
"profile_name”: "default”,
"s3_bucket”: "zappa-68fz81bc0O”

;

Does this look okay? (default 'y') [y/n]:

Done! Now you can deploy your Zappa application by executing:
$ zappa deploy dev

After that, you can update your application code with:

$ zappa update dev

To learn more, check out our project page on GitHub here: https://github.com/Miserlou/Zappa
and stop by our Slack channel here: https://slack.zappa.io

Enjoy!,
~ Team Zappa!

zappa_settings.json
{
"dev": {

"aws_region": "us-east-1",
"django_settings": "hello.settings”,
"profile name": "default”,
"project_name": "hello",
"runtime”: "python3.6",
"s3 bucket": "zappa-huygbop0s”

39

Zappa deploy

Amazon S3

S zappa deploy <env>

*Zips code and dependencies

*Create AWS Lambda and deploys the zip

*Creates endpoint on APl Gateway and
links to AWS Lambda

Microservices and Serverless in Python projects 40

Zappa deploy

zappa zappa deploy
jeploy for stage devé..
g and 1installing dependencies.
python3b: Using precompirlied lambda package
pr
zappa-devo-1

L%, | | | 13, 5M

ZAappa-aevo-Zappa-xKeep-warm "l}"'w_'.l"",h‘-r':) a‘-L)V"“,,(,l’_ll..t'h"li-L\ with expression
zappa-devo-template-1523116139.3son (1.6K18)..
L | I | 1L 00K/ 1 .00k 0000000,
nting for stack zappa-devt) te (this can take a 5 .
| /4 [00:06<00:02,

|

t'f'}plt},‘ '."'\} A»): ()(_]’f"'ﬂ‘l:\', .

Zappa Asynchronous Task

from flask import Flask

rom zappa.async import task

app = Flask(__name__)

@task

def make_pie():
""" This takes a long time!
ingredients = get_ingredients()
pie = bake(ingredients)

deliver(pie)

@app.route('/api/order/pie’)
def order_pie():
""" This returns immediately! """

make_pie()
return "Your pie is being made!™

Microservices and Serverless in Python projects 43

Chalice

* Python Serverless Microframework for AWS
*Each endpoint is a separate function

Chalice

Python Serverless Microframework for AWS

python aws aws-lambda cloud serverless serverless-framework aws-apigateway lambda python3 python27
P 1,214 commits ¥ 8 branches © 29 releases 42 61 contributors s Apache-2.0

Branch: master v New pull request Find file Clone or download ~
m jamesls Merge branch 's3-trigger' = --- Latest commit 7ac65bc 13 days ago
i .github Merge branch ‘hyandell-master’ 2 months ago
B chalice Make pylint/flake8 happy 13 days ago
| docs Automatically url decode S3 keys 13 days ago
Bl scripts Set patch version to 0 on minor version bumps 7 months ago
Bl tests Automatically url decode S3 keys 13 days ago
[E) .coveragerc Ignore not implementederror in coverage a year ago
[.gitignore Finish PR for packaging arbitrary directories as wheels a month ago
B .pylintrc Automatically reload dev server when files change a month ago
[E -travis.yml Print test type a month ago

Microservices and Serverless in Python projects 45

Chalice

$ pip install chalice
$ chalice new-project helloworld && cd helloworld

$ cat app.py
from chalice import Chalice

app = Chalice (app_name="helloworld")

Qapp.route ("/")
def index () :
return {"hello": "world"}

$ chalice deploy

Chalice example

import requests

URL = "http://api.apixu.com/v1l/current.json?key=51deeb4a20ef476db6b165625181907&q="

@app.route('/weather/{city}")
def weather(city):
try:
if city is None:
return _error("Invalid data (required city)")

response = requests.get(URL+city).json()
return Response(body=response,
status_code=200,
headers={'Content-Type': 'application/json'})

except Exception as exception:
raise BadRequestError("Unknown url '%s'" % (URL))

Microservices and Serverless in Python projects 47

Chalice methods

Resource
/talks

/talk
/talks/{ID}
[talks/{ID}

HTTP Verb
GET

POST

PUT
DELETE

AWS Lambda
get talks

add new talk
update talk
delete talk

Chalice methods

ﬂdef get

e('/talks

', methods=["'GET"'])

talks():

- return get _app db() .list items()

‘ﬂ-_:‘ ™7
e &

p.route('/talks', methods=["'PO:!
]def add new
body

ST 1)
_talk():

app.current request.json body

] return get app db() .add item(

/talks/{id}', methods=['DELETE'])
k{id):
return get_app_db().delete_item(id)

QiQxQ _’d__

U LT LT

@app.route('/talks/{id}"', methods=['PUT"'])
def update talk(id):
body = app.current request.]json body

get _app db() .update item(id,description=body.get('descriptic

id=body['id'],
description=body|['description']

n') ,state=body.get('state

Microservices and Serverless in Python projects

)

49

Chalice options

Jsage: chalice [OPTION OMMAND | AK

Options:
-=Vversion Show the version and exit.
--project-dir TEXT The project directory. Defaults to CwD
--debug / --no-debug Print debug logs to stderr.
--help Show this message and exit.

Commands :
delete
deploy
gen-policy
generate-pipeline Generate a cloudformation template for a...
generate-sdk
local
logs
hew-project
package
url

Microservices and Serverless in Python projects 50

Chalice deploy

Updating |AM policy.
Updating lambda function...
Regen deployment package...

Sending changes to lambda.
AP| Gateway rest APl already found.
Deploying to: dev

AWS Lambda

Microservices and Serverless in Python projects .

https://github.com/lambci/docker-lambda

docker-lambda

A sandboxed local environment that replicates the live AWS Lambda environment almost identically — including installed
software and libraries, file structure and permissions, environment variables, context objects and behaviors — even the user and

running process are the same.

[~ docker run -v "$PWD":/var/task lambci/lambda

START Requestld: 4ce@a’791-5a50-1cP9-1a8a-cOcd4cb431a49 V
process.execPath:
/usr/local/lib64/node-v4.3.x/bin/node
process.cwd():
/var/task
child_process.execSync('ls -la /tmp'):
total 8

2 sbx_userl®51 495 4096 May 26 02:14 .
drwxr=xr-x 27 root root 4096 May 26 03:47 ..

context.getRemainingTimeInMillis():
299978

53

http://serverlesscalc.com/

Author from scratch

Start with a simple "hello world" example.

Blueprints (o)

Choose a preconfigured template as a starting
point for your Lambda function.

=/
EXY

Serverless Application Repository

Find and deploy serverless apps published by
developers, companies, and partners on AWS.

Blueprints info

Q, Filter by tags and attributes or search by keyword

Evnort
LADUI L

kinesis-firehose-syslog-to-json

An Amazon Kinesis Firehose stream processor
that converts input records from RFC3164 Syslog
format to JSON.

nodejs - kinesis-firehose

logicmonitor-send-cloudwatch-
events

Creates LogicMonitor OpsNotes for CloudWatch
Events, thereby enabling correlation between
events and performance data.

python - cloudwatch-events - monitoring -
eventstream - ext-libraries

splunk-elb-application-access-
logs-processor

Stream Application ELB access logs from S3 to
Splunk's HTTP event collector

nodejs6.10 - splunk - elb - s3 - application-elb

Microservices and Serverless in Python projects 55

https://github.com/serverless/examples

B8 aws-python-alexa-skill

R

python-auth0-custom-authoriz...

B aws-python-pynamodb-s3-sigurl

B8 aws-python-rest-api-with-dynamodb
B aws-python-rest-api-with-faunadb
B8 aws-python-rest-api-with-pynamodb
B8 aws-python-scheduled-cron

@ aws-python-simple-http-endpoint
BB aws-python-telegram-bot

B azure-node-simple-http-endpoint
8 google-node-simple-http-endpoint
B8 kubeless-python-schedule

B8 kubeless-python-simple

Add front matter to the examples readme for pusblishing to site.
Added Python AWS Lambda Authorizer

Fix issues from reviewer suggestions.

Fixing SETUP typo in README.md

Add front matter to the examples readme for pusblishing to site.
Update to docs

Add front matter to the examples readme for pusblishing to site.
Add front matter to the examples readme for pusblishing to site.
Add aws-python-telegram-bot

Update the Azure example to match recent updates.

Merge pull request #159 from serverless/update-gcf-npm-package-version
Adapt examples to kubeless 0.5

Adapt examples to kubeless 0.5

a year ago
9 days ago
8 months ago
7 months ago
a year ago
a year ago
a year ago
a year ago
9 months ago
a year ago
a year ago
4 months ago

4 months ago

Microservices and Serverless in Python projects 56

References

* https://aws.amazon.com/blogs/compute/microservic
es-without-the-servers

* https://github.com/Miserlou/Zappa
* https://github.com/pmuens/awesome-serverless

* https://github.com/aws/chalice
* https://chalice.readthedocs.io/en/latest

Microservices and Serverless in Python projects 57

https://aws.amazon.com/blogs/compute/microservices-without-the-servers
https://aws.amazon.com/blogs/compute/microservices-without-the-servers
https://github.com/Miserlou/Zappa
https://github.com/pmuens/awesome-serverless
https://github.com/aws/chalice
https://chalice.readthedocs.io/en/latest

Serverless architecture is the
next generation of cloud
evolution

Microservices and Serverless in Python projects |58

Edinburgh 23-29 July
2018

Thank you!

europython

José Manuel Ortega
jmortega.github.io

