
Barbican
“Barbican is the OpenStack Key Manager
service. It provides secure storage,
provisioning and management of secret
data, such as passwords, encryption keys,
X.509 Certificates and raw binary data.”

https://www.openstack.org__

OpenStack
“OpenStack is a set of software tools for
building and managing cloud computing
platforms for public and private clouds.
Backed by some of the biggest companies
in software development and hosting, as
well as thousands of individual community
members”

https://openstack.org__

PoC Scenarios

BEFORE

Our application is using configuration files in the INI
format. There are a few passwords stored directly in
the configuration file my_app.conf. This file lives
within the deployment of our application and to scale
it also needs to be running in a large number of
machines, making copies of our passwords all over the
cloud.

file: /etc/my_app.conf

[DEFAULT]
mysql_username = my_app
mysql_password = secretPasswordABCDEF

[dogtag_plugin]
nss_db_path = /etc/my_app/alias
nss_password = secretPassword123456

[kmip_plugin]
username = kmip1923804
password = secretPassword654321

AFTER

After identifying the secrets in our configuration file
we setup a dedicated server at the arbitrary address
192.168.42.42. On this server, an HTTPS server
that allows only client authenticated connections is
deployed to serve our secrets.conf file
containing the secrets stripped out of
my_app.conf.

The my_app.conf file is updated to contain the
remote_file driver configuration in order to be
able to reach the secrets.

Each instance of our application has its own key pair
to authenticate to the secrets server making it possible
to instantly revoke access to the secrets for a single
node. A short lifespan on the client's certificate can
also reduce the attack window if by any chance the
client keys are compromised.

file: /etc/my_app.conf

[DEFAULT]
config_source = secrets

[secrets]
driver = remote_file
uri = https://192.168.42.42/secrets.conf
client_cert = /etc/ca-certificates/cert.pem
client_key = /etc/ca-certificates/key.pem

[dogtag_plugin]
nss_db_path = /etc/my_app/alias

file: secrets.conf at 192.168.42.42

[DEFAULT]
mysql_username = my_app
mysql_password = secretPasswordABCDEF

[dogtag_plugin]
nss_password = secretPassword123456

[kmip_plugin]
username = kmip1923804
password = secretPassword654321

Oslo
“The Oslo project is a collection of over 30
libraries that are designed to reduce the
technical debt of code duplication across
projects and provide for a greater quality
code path due to the frequency of use in
OpenStack projects.”

http://ronaldbradford.com__

EuroPython Edinburgh 23-29 July 2018

Hardening Plaintext Secrets in Configuration Files
Moisés Guimarães de Medeiros - Software Engineer - Red Hat

Introduction
Many applications and services rely on configuration data to be able to interact
with each other and to function according to its purpose. Plaintext configuration
files are widely used to separate configuration from code as configuration data
varies substantially across deployments while code does not.

OpenStack Common Libraries (Oslo) provides an enhanced alternative to Python's
standard module ConfigParser called oslo.config. It supports configuration files,
command line arguments, option deprecation, and much more.

The motivation of this work is to give oslo.config the ability to fetch sensitive
configuration data (secrets) from places that are better equipped to deal with them.

Problem Description
Best practices say that passwords and other secret values should not be stored as
plain text in configuration files and some regulations might even enforce this
practice as mandatory.

Although we can rely on file system permissions to restrict access to a configuration
file, its content can still be accidentally shared, checked into revision control, or
printed to a console or log file, without having all sensitive data stripped out of it.

Also, with the popularization of containers and public clouds, there is a higher
concern about data getting compromised as we don't know what else might be
running on the same machine.

Proposed Solution
There are proper solutions for storing this kind of sensitive data called secret
managers. They have features to handle access control, password rotation, data
encryption/decryption, X.509 certificates and can also interface with Hardware
Security Modules (HSM) if the security requirements are set that high.

OpenStack has its own secret manager service called Barbican, and HashiCorp
Vault is one of the best opensource solutions out there. Both are very interesting
options to connect oslo.config to, but to provide more flexibility, we defined an
API for backend drivers in oslo.config, so it could easily integrate with more
options in the future.

In a few words, a config option in oslo.config is identified by its name and group,
when the group is not defined, the option automatically belongs to the DEFAULT
group. We can see a sample config file with two options below, one belonging to
the DEFAULT group and another to the credentials group:

A new configuration option DEFAULT.config_source is added to define
extra sources of configuration data. The value for config_source is a list of
source identifiers used to find configuration settings for other sources. Each source
identifier corresponds to a configuration option group, which provides the details
for a single source of configuration data.

Each config group representing an extra config source must have an option named
driver to identify the proper drive to handle it.

When oslo.config looks for an option value, it goes through the defined sources in
the order they are provided, starting with the command line, then any
configuration files, and finally the sources loaded from config_source. The
first source that provides a configured value for an option causes the search to end.

Proof of Concept
The Proof of Concept (PoC) of this work aimed to fulfill the following criteria:

1. Implement a simple driver to fetch remote configuration data;

2. Strip out secrets from a configuration file;

3. Store secrets in a new configuration source;

4. Give oslo.config the ability to fetch those secrets.

We created the remote_file driver to fetch and parse extra configuration files
from an http[s] server with the following options.

driver = remote_file

The name of the driver that can load this configuration source.

uri

Required option with the URI of the extra configuration file's location.

ca_path

The path to a CA_BUNDLE file or directory with certificates of trusted CAs.

client_cert

Client side certificate, as a single file path containing either the certificate only
or the private key and the certificate.

client_key

Client side private key, in case client_cert is specified but does not include the
private key.

We can see on the PoC Scenarios session how the configuration files look like
before and after the usage of the remote_file driver.

Conclusions
By fetching secrets from other sources, one can include extra layers of protection to
them and take advantage of features provided by secret managers.

Using the remote_file driver in its full capability, it is possible to deny access to
secrets by revoking the certificate of a compromised deployment. This requires
each deployment to have its own certificate, and SSL/TLS client authentication
on the HTTP server.

Having the secrets to live in a single place also makes the process of password
rotation easier as the new password only has to be updated in one place instead of
in all configuration files that requires it.

The lifespan of a deployment's certificate can be reduced to enforce secrets leasing
for a short time period and minimize the attack window using compromised keys.

Future Work
Castellan is a generic key manager interface developed by the Barbican team. It
enables projects to use a configurable key manager that can be deployment specific.

The next step in our roadmap is to create an oslo.config driver for Castellan. This
will give oslo.config the capability to retrieve secrets from all of the key manager
solutions supported by Castellan, giving access to Barbican or HashiCorp Vault
through a single driver implementation.

Direct drivers to Barbican or HashiCorp Vault can also be implemented, but as far
as oslo.config doesn’t require features other than retrieval of secrets, it makes sense
to use Castellan as the lowest-common-denominator instead.

Developers interested in using another solution as an extra source of configuration
data can implement their own drivers following this spec:

https://specs.openstack.org/openstack/oslo-specs/specs/queens/oslo-config-drivers

[DEFAULT]
foo = bar

[credentials]
username = admin
password = maZ4uFtJUqyA

name value

group

HashiCorp Vault
“HashiCorp Vault secures, stores, and
tightly controls access to tokens, passwords,
certificates, API keys, and other secrets in
modern computing. Vault handles leasing,
key revocation, key rolling, and auditing.”

https://www.vaultproject.io__

