
Marge-bot: better
Git’ing with
python
Europython 2018

Alexander Schmolck
Mika Bostrom

What's wrong about this picture?

What's wrong about this picture?
What's wrong with this picture?

Outline

● The typical CI setup or going from green PRs to red master
● The fix, conceptually
● The fix, in practice: achieving familiarity, usability and scalability
● More nice stuff:

● auditing, usable git bisect & git revert
● Audience takeaways:

● Flexible & free out-of-the box solution for Gitlab (~3 mins setup)
● Solutions, DIY or otherwise if you're not on Gitlab (e.g. Github)
● Some useful Git workflow and Python patterns

Why broken master is bad

●🏖 subsequent PRs are built on sand
●🚢 bad ships to prod more likely
● 🏃retracing your steps becomes hard (e.g. bisect)

👷
reviews

patch

%
hacks on

 code

ApprovesRejects
Smarkets Workflow (2016)

new
master

CI

% pushes straight to master

slacks patch

👷
reviews

patch

%
hacks on

 code

CI

ApprovesRejects
Smarkets Workflow (2016)

new
master

(broken)

CI

% pushes straight to master

slacks patch

Freq
uen

t Br
eaka

ge

Master can be broken because

● bad workflows  
(spoiler: 🤖marge-bot can fix that for you!)

● “flaky builds”  
(non-determinism is harder to fix)

👷
reviews

patch

%
hacks on

 code

CI

ApprovesRejects
Maybe do CI... first?
And don't slack patches?

new
master

CI

% pushes straight to master

slacks patch

👷
reviews

%
hacks on

 code

CI

PR

Fails Passes

ApprovesRejects

new
master

“Best practice” Workflow

👷
reviews

%
hacks on

 code

CI

Merge
Conflict

?

PR

Fails Passes

Approves

Yes

Rejects

No new
master

But master moves!

👷
reviews

%
hacks on

 code

CI

Merge
Conflict

?

PR

Fails Passes

Approves

Yes

Rejects

No Logical
Conflict

?

new
master
(good)

No

new
master

(broken)

Yes

But master moves!
Obsoletes CI!

👷
reviews

%
hacks on

 code

%
rebases
master

CI

PR

Merge Conflict

Approves

Fails

Rejects

Passes
new

master
(good)

Green master the hard
way

master
moved?

Yes

No

👷
reviews

%
hacks on

 code

%
rebases
master

CI

PR

Merge Conflict

Approves

Fails

Rejects

Passes
new

master
(good)

Green master the hard
way

master
moved?

Yes

No

👷
reviews

%
hacks on

 code

%
rebases
master

CI

PR

Merge Conflict

Approves

Fails

Rejects

Passes
new

master
(good)

Green master the hard
way

master
moved?

Yes

No

🕙

🕚

🕛🕒🕔 •••

Sad%

Sad%

Sad%
writes🤖

This is the
story of this 🤖

👷
reviews

%
hacks on

 code

🤖
rebases
master

CI

PR

Merge Conflict

Approves

Fails

Rejects

Passes new
master

🤖 Marge-bot makes sure
CI tests the right thing

👷
reviews

%
hacks on

 code

🤖
rebases
master

CI

PR

Merge Conflict

Approves

Fails

Rejects

Passes new
master

Note, no master
moved? !

👷
reviews

%
hacks on

 code

🤖
rebases
master

CI

PR

Merge Conflict

Approves

Fails

Rejects

Passes new
master

Note, no master
moved? !

(well technically, there is still some
logic for that, but just if user circumvents
process)

How green PRs
can break
master

CI FAIL CI PASS

BROKEN GOOD

A1

B1

M1

M1

M2

A2

PR 1

PR 2

master

A1

B1

M3

M1

M2

CI FAIL CI PASS

BROKEN GOOD

A2

Logical Conflict

CI FAIL CI PASS

BROKEN GOOD

A'1

B1

M1

M1

M2

A'2

Going from Green PRs to Red master

● New wine into old skins: PR 1 changes a function’s API and all its call-sites, PR 2
introduces a new call site

● Outdated coverage: PR1 improves test coverage, PR2 changes the API
● Fragile Baseclass: PR1 makes internal changes to how Klass is implemented; PR2

adds some functionality to SubKlass that breaks because e.g. Klass.f no longer calls
Klass.g internally.

None of these will cause merge conflicts or (feature-branch) CI failures; you’ll find out
there is a logical conflict after successful merge to master.

Running Marge-bot (in 3mins or less)
1. Create marge-bot ssh key and gitlab account/token

⬅

Running Marge-bot (in 3mins or less)

docker run --restart=on-failure \
 --env-file=<(
 echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
 echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
 smarkets/marge-bot \
 --gitlab-url='http://your.gitlab.instance.com'

1. Create marge-bot ssh key and gitlab account/token
2.

Running Marge-bot (in 3mins or less)

docker run --restart=on-failure \
 --env-file=<(
 echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
 echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
 smarkets/marge-bot \
 --gitlab-url='http://your.gitlab.instance.com'

1. Create marge-bot ssh key and gitlab account/token
2.

3. Add marge-bot as a user (dev or master) to your project(s)

Demo of assigning
PR to marge-bot

Conceptual Fix is simple

● Maintain a queue of pull requests
● Before merging a PR
● rebase latest master into PR branch
● wait for CI to pass

● Profit!
● master will be always green (unless some tests are flaky)

Making it work practice (Usability/Familiarity)

● Familiarity
● use normal gitlab flow, but assign to Marge-bot rather than pressing “merge after CI

passes” (will make sure CI passed and branch has been reviewed)
● Fair amount of behind-the-scenes work to bend Gitlab API to our will (not designed with

this use case in mind; race conditions, need)
● Usability

● Gitlab user name is “ marge-bot” (initial space, sorts first in list of users, so quick to
assign to)

● Marge leaves comments telling you if there is a problem (CI failed, no approval, conflict...)
● we have a Slack channel that shows the Merge queue maintained by Marge (so place in

queue/ETA easy to find

Making it work practice (Scalability)

● Scalability (via Batching)
● rebasing all open PRs on merge/rebase to master and re-running CI works fine

for up to a dozen devs and CI tests that take a few mins
● beyond that too much load on gitlab and CI build slaves
● solution: create a “synthetic” batch merge request of top of queue PRs that

have passed branch CI already; make synthetic branch top of queue
● omit PRs that cause merge conflicts
● if tests pass, merge all individual PRs (bypassing CI)
● if tests fail, split
● in either case, throw away “synthetic” branch

CI FAIL CI PASS

BROKEN GOOD

A1

B1

M1

M1

M2

A2

CI FAIL CI PASS

BROKEN GOOD

A1

B1

M1

M1

M2

A2

C1
PR 2

PR 1

PR 3

CI FAIL CI PASS

BROKEN GOOD

A1

B1

M1

M1

M2

A2

C1

A'1

A'2

B'1

Omit
failed CI&
merge conflicts

Temp branch

That’s
basically it!
Green Master!

Our workflow
requirements at
Smarkets

Productivity Requirements

Code must flow: 

● 70 devs, 11 teams, ~130 services
● Commits every few mins
● ~10 ships to prod/day
● want to preserve velocity

Audits & Auditors

● We’re in a regulated industry
● Requirements vary by country
● Goal #1: meet all at once
● Goal #2: don’t cripple workflow

Regulatory Requirements

Auditors may want to know: 

● Who wrote this code and when?
● Who signed it off?
● How was it validated?
● Why was it needed?
● When was it deployed and by whom?
● Who approved the deployment? 

In fact fact you might well want to know these things, even if you’re not audited!

Regulatory Requirements

Auditors may want to know: 

● Who wrote this code and when?
● Who signed it off?
● How was it validated?
● Why was it needed?
● When was it deployed and by whom?
● Who approved the deployment? 

In fact fact you might well want to know these things, even if you’re not audited!

Git-out of the box

Gitlab + Marge-bot (git trailers)

Our Ship tool + git notes

Common thread: compliance centred around git

●Cryptographic
●Familiar
●Flexible
●Platform agnostic

Git
workflows
Theory vs Practice

Theory

● Main repo as a collection of subrepos of independently developed (micro-)services/libs is a
Good Idea
● Macro-view of all that will run in prod in the main repo
● Micro-view of individual services in subrepo

● just your service’s history/code, no need to check out GiBs etc.
● can simplify and speed up CI

● Merging (feature) branches (into master) is a Good Idea
● Macro-view of features on master
● Micro-view of implementation steps in branch
● history is inviolate!

Practice

Google Image
Search for
Git submodules

Just go Monorepo, don’t resist assimilation

Your service

Monorepo

🐧Reverting PRs the Linus way

…

https://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt

https://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt

🤖 Reverting PRs the marge-bot way

git revert-mr 123

Which one would
you rather do when
prod is broken?

Now which PR actually broke this? (plain git way)

● I know, I’ll use git bisect run to find out

● Only look at merge commits to master? Needs 3rd party tool.
● Feature branch commits will often not have passed CI, will get false positives.

Now which PR actually broke this? (marge-bot way)

git bisect-run-tested ./test.sh

Only runs on commits that passed CI
(marge-bot can add Tested-by: trailer to last commit of PR if you have mandatory CI switched on in Gitlab)

How does it
work?

Recap: bare bones marge setup

docker run --restart=on-failure \
 --env-file=<(
 echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
 echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
 smarkets/marge-bot \
 --gitlab-url='http://your.gitlab.instance.com'

More --args, more features!

docker run --restart=on-failure \
 --env-file=<(
 echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
 echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
 smarkets/marge-bot \
 --gitlab-url='http://your.gitlab.instance.com' \
 --batch \
 --add-part-of \
 --add-tested \
 --add-reviewers \
 --impersonate-approvers

Adds a “Reviewed-by: <guy who approved PR>” Trailer to commits

Adds a “Tested-by: <PR-url>” Trailer to final commit in PR

Try to optimistically batch several PRs for faster CI

Re-approve after rewriting commits to add Trailers

Adds a “Part-of: <PR-url>” Trailer to commits

Bare bones commit

commit 5ddc293ec55408ecc101eacf6495421a16182633
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

 marge-bot: bump to version 0.7.0

 There's a new version of Marge available, so let's update our in-house
 version to match.

Optional Features: Audit with --add-reviewers

commit 146891a956fd35cf8ab6445d7ec76fddf4230925
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

 marge-bot: bump to version 0.7.0

 There's a new version of Marge available, so let's update our in-house
 version to match.

 Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com>

Optional Features: Bisect with --add-tested

commit ca582b7ab9f03f496509291b1fa2e8f768a76f05
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

 marge-bot: bump to version 0.7.0

 There's a new version of Marge available, so let's update our in-house
 version to match.

 Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com>
 Tested-by: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727>

Optional Features: Revert with --add-part-of

commit 088bf8546b73b559322a8744e867cf8949fe6225
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

 marge-bot: bump to version 0.7.0

 There's a new version of Marge available, so let's update our in-house
 version to match.

 Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com>
 Tested-by: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727>
 Part-of: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727>

Then it's just a bunch of git aliases!
git config --global alias.bisect-run-tested \
 'f() { git bisect run /bin/sh -c
 "if !(git log -1 --format %B
 | fgrep -q \"Tested-by: Marge Bot\");
 then exit 125;
 else "$@"; fi"; }; f'

git config --global alias.mr-revs \
 '!f() { git log --grep "^Part-of.*/""$1"">" --pretty="%H"; }; f'
git config --global alias.mr-url \
 '!f() { git log -1 --grep "^Part-of.*/""$1"">" --pretty="%b" |
 grep "^Part-of.*/""$1"">" | sed "s/.*<\\(.*\\)>/\\1/"; }; f'
git config --global alias.revert-mr \
 '!f() { REVS=$(git mr-revs "$1"); URL="$(git mr-url "$1")";
 git revert --no-commit $REVS;
 git commit -m "Revert <$URL>$(echo;echo; echo "$REVS"
 | xargs -I% echo "This reverts commit %.")"; }; f'

What if you can't use Marge-bot (not on Gitlab)?

What if you can't use Marge-bot (not on Gitlab)?

● At least now you know what you're missing ;)
● If you don't need something general, roll-your-own is often pretty easy

● we more or less did that at my last 3 employers
● Also, we welcome PRs to https://github.com/smarkets/marge (github backend

would be cool, and probably straightforward!)
● Similar tools might exists; e.g. for github there's also Rust's homu

https://github.com/smarkets/marge
https://github.com/barosl/homu

Summary

● A good PR workflow runs tests against “future” master not just the feature branch
● good ≠ common (but now you know you want it and how to get it!)
● https://github.com/smarkets/marge-bot will do it for gitlab, the way you want (merge or

rebase-based)
● Marge-bot can also add Trailers to show who Reviewed commit and what PR

● Combines best of Merge and Rebase based workflows (e.g. you can still see what PR
commits belonged to)

● Extra perks:
● git bisect that actually works (at PR level)
● git revert that actually works (at PR level)

● In practice: Monorepo and rebasing PRs > subrepos and merging PRs (usually)

https://github.com/smarkets/marge-bot

What's wrong about this picture?
What's wrong with this picture?

What's wrong about this picture?
What's wrong with this picture?

Credits

● Daniel Gorin (initial
design &
implementation)

● Alexander Schmolck
(trailers, nix-based
build, general
maintenance)

● Jaime Lennox
(batching, slack
integration, general
maintenance)

● Marian Rusu (batching,
build & CI
improvements)

● all our users who submitted PRs, suggestions and bug reports

https://github.com/jcpetruzza
https://github.com/aschmolck
https://github.com/JaimeLennox
https://github.com/mrusu91

Extra Material

Gitlab Wish list

● Commit message changes should not trigger CI
● Rebasing the target branch into the source branch should

not reset approvals
● Getting approver email should not require excessive perms
● Merge API should

● take optional expected hash of master (don't merge if it doesn't match)
● allow overriding CI trigger and force merge (e.g. “trust me, it's tested” for batch

mode)
● PRs from forks are kinda broken

● CI is on fork (which probably hasn't the right setup)

Implementation
details...
... that I think worked well

Architecture

● keeping it simple:
● stateless
● no concurrency
● crash on network or Gitlab failures (HTTP 50x)

● rely on 
`docker run --restart=on-failure` or systemd

● Advantages:
● simple! (no messy python-style concurrency, linear log of actions easy to grok)

● Disadvantages:
● extra requests/slower (e.g. cloning big repo again after crash); not an issue for us so far

● yield-on-sleep and retrying requests might be good complexity/benefit trade-off

ConfigArgParse: mix and match --args, ENV and config files

● Marge accepts most options as env-var --arg or yaml config option
● Various benefits

● quickly override option in config file for test (e.g. new auth token)
● config file best for complex setup, command line args sufficient for vanilla

setup
● Can still customize:

● we disallow passing secrets as commandline args for security reasons

https://github.com/bw2/ConfigArgParse

Derive from namedtuples for lightweight biz logic classes

class Version(namedtuple('Version', 'release edition')):
 @classmethod
 def parse(cls, string):
 release_string, edition = string.split('-', 1)
 release = tuple(int(number) for number in release_string.split('.'))
 return cls(release=release, edition=edition)

 @property
 def is_ee(self):
 return self.edition == 'ee'

(constructor, repr, updated-copy and enforced immutability for free)

Better mocking with state machines

class MockLab(object):
 def __init__(self, gitlab_url=None):
 self.api = api = ApiMock('...', initial_state='initial')

 api.add_transition(GET('/version'), Ok({'version': '9.2.3-ee'}))
 # [...]
 api.add_transition(
 GET('/projects/1234/repository/commits/%s' % rewritten_sha),
 Ok(commit_after_pushing),
 from_state='pushed', to_state='passed',
)
 api.add_transition(
 GET('/projects/1234/repository/commits/%s' % rewritten_sha),
 Ok(_commit(id=rewritten_sha, status='success')),
 from_state=['passed', 'merged'],
)

(Nicer than typical mocking, IMO, but learning curve has kept it out of recent code)

nix: Completely reproducible (docker image) builds (w/o docker)

● fast, correct, small  
(pick 3)

● Travis supports it
● drives CI and images
● nix-shell --pure =  

 virtualenv on steroids  
- also handles non-py 
deps, e.g. git, ssh  
- actually works

https://nixos.org/nix/

