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Outline

● The typical CI setup or going from green PRs to red master 
● The fix, conceptually 
● The fix, in practice: achieving familiarity, usability and scalability 
● More nice stuff: 

● auditing, usable git bisect & git revert 
● Audience takeaways: 

● Flexible & free out-of-the box solution for Gitlab (~3 mins setup) 
● Solutions, DIY or otherwise if you're not on Gitlab (e.g. Github) 
● Some useful Git workflow and Python patterns



Why broken master is bad

●🏖 subsequent PRs are built on sand  
●🚢 bad ships to prod more likely 
● 🏃retracing your steps becomes hard (e.g. bisect)
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Master can be broken because

● bad workflows  
(spoiler: 🤖marge-bot can fix that for you!) 

● “flaky builds”  
(non-determinism is harder to fix)
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How green PRs 
can break 
master
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Going from Green PRs to Red master

● New wine into old skins: PR 1 changes a function’s API and all its call-sites, PR 2 
introduces a new call site 

● Outdated coverage: PR1 improves test coverage, PR2 changes the API 
● Fragile Baseclass: PR1 makes internal changes to how Klass is implemented; PR2 

adds some functionality to SubKlass that breaks because e.g. Klass.f no longer calls 
Klass.g internally. 

None of these will cause merge conflicts or (feature-branch) CI failures; you’ll find out 
there is a logical conflict after successful merge to master.



Running Marge-bot (in 3mins or less)
1. Create marge-bot ssh key and gitlab account/token

⬅



Running Marge-bot (in 3mins or less)

docker run --restart=on-failure \ 
  --env-file=<( 
     echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)"; 
     echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \ 
  smarkets/marge-bot \ 
  --gitlab-url='http://your.gitlab.instance.com'

1. Create marge-bot ssh key and gitlab account/token
2.



Running Marge-bot (in 3mins or less)

docker run --restart=on-failure \ 
  --env-file=<( 
     echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)"; 
     echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \ 
  smarkets/marge-bot \ 
  --gitlab-url='http://your.gitlab.instance.com'

1. Create marge-bot ssh key and gitlab account/token
2.

3. Add marge-bot as a user (dev or master) to your project(s)



Demo of assigning 
PR to marge-bot



Conceptual Fix is simple

● Maintain a queue of pull requests 
● Before merging a PR 
● rebase latest master into PR branch 
● wait for CI to pass 

● Profit! 
● master will be always green (unless some tests are flaky)



Making it work practice (Usability/Familiarity)

● Familiarity 
● use normal gitlab flow, but assign to Marge-bot rather than pressing “merge after CI 

passes” (will make sure CI passed and branch has been reviewed) 
● Fair amount of behind-the-scenes work to bend Gitlab API to our will (not designed with 

this use case in mind; race conditions, need ) 
● Usability 

● Gitlab user name is “ marge-bot” (initial space, sorts first in list of users, so quick to 
assign to) 

● Marge leaves comments telling you if there is a problem (CI failed, no approval, conflict...) 
● we have a Slack channel that shows the Merge queue maintained by Marge (so place in 

queue/ETA easy to find



Making it work practice (Scalability)

● Scalability (via Batching) 
● rebasing all open PRs on merge/rebase to master and re-running CI works fine 

for up to a dozen devs and CI tests that take a few mins 
● beyond that too much load on gitlab and CI build slaves 
● solution: create a “synthetic” batch merge request of top of queue PRs that 

have passed branch CI already; make synthetic branch top of queue 
● omit PRs that cause merge conflicts 
● if tests pass, merge all individual PRs (bypassing CI) 
● if tests fail, split 
● in either case, throw away “synthetic” branch
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That’s 
basically it!
Green Master!





Our workflow 
requirements at 
Smarkets



Productivity Requirements

Code must flow: 

● 70 devs, 11 teams, ~130 services 
● Commits every few mins 
● ~10 ships to prod/day 
● want to preserve velocity



Audits & Auditors

● We’re in a regulated industry 
● Requirements vary by country 
● Goal #1: meet all at once 
● Goal #2: don’t cripple workflow



Regulatory Requirements

Auditors may want to know: 

● Who wrote this code and when? 
● Who signed it off? 
● How was it validated? 
● Why was it needed? 
● When was it deployed and by whom? 
● Who approved the deployment? 

In fact fact you might well want to know these things, even if you’re not audited!



Regulatory Requirements

Auditors may want to know: 

● Who wrote this code and when? 
● Who signed it off? 
● How was it validated? 
● Why was it needed? 
● When was it deployed and by whom? 
● Who approved the deployment? 

In fact fact you might well want to know these things, even if you’re not audited!

Git-out of the box

Gitlab + Marge-bot (git trailers)

Our Ship tool + git notes



Common thread: compliance centred around git

●Cryptographic 
●Familiar 
●Flexible 
●Platform agnostic



Git 
workflows
Theory vs Practice



Theory

● Main repo as a collection of subrepos of independently developed (micro-)services/libs is a 
Good Idea 
● Macro-view of all that will run in prod in the main repo 
● Micro-view of individual services in subrepo 

● just your service’s history/code, no need to check out GiBs etc. 
● can simplify and speed up CI 

● Merging (feature) branches (into master) is a Good Idea 
● Macro-view of features on master 
● Micro-view of implementation steps in branch 
● history is inviolate!



Practice
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Just go Monorepo, don’t resist assimilation

Your service

Monorepo



🐧Reverting PRs the Linus way

…

https://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt

https://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt


🤖 Reverting PRs the marge-bot way

git revert-mr 123



Which one would 
you rather do when  
prod is broken?



Now which PR actually broke this? (plain git way)

● I know, I’ll use git bisect run to find out

● Only look at merge commits to master? Needs 3rd party tool. 
● Feature branch commits will often not have passed CI, will get false positives.



Now which PR actually broke this? (marge-bot way)

git bisect-run-tested ./test.sh

Only runs on commits that passed CI  
(marge-bot can add Tested-by: trailer to last commit of PR  if you have mandatory CI switched on in Gitlab)



How does it 
work?



Recap: bare bones marge setup

docker run --restart=on-failure \ 
  --env-file=<( 
     echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)"; 
     echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \ 
  smarkets/marge-bot \ 
  --gitlab-url='http://your.gitlab.instance.com'



More --args, more features!

docker run --restart=on-failure \ 
  --env-file=<( 
     echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)"; 
     echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \ 
  smarkets/marge-bot \ 
  --gitlab-url='http://your.gitlab.instance.com' \ 
  --batch \ 
  --add-part-of \ 
  --add-tested \ 
  --add-reviewers \ 
  --impersonate-approvers 

Adds a “Reviewed-by: <guy who approved PR>” Trailer to commits

Adds a “Tested-by: <PR-url>” Trailer to final commit in PR

Try to optimistically batch several PRs for faster CI

Re-approve after rewriting commits to add Trailers

Adds a “Part-of: <PR-url>” Trailer to commits



Bare bones commit

commit 5ddc293ec55408ecc101eacf6495421a16182633  
Author: Jaime Lennox <jaime.lennox@smarkets.com> 
Date:   Mon Jul 23 11:46:41 2018 +0100 

    marge-bot: bump to version 0.7.0 

    There's a new version of Marge available, so let's update our in-house 
    version to match. 

   



Optional Features: Audit with --add-reviewers

commit 146891a956fd35cf8ab6445d7ec76fddf4230925  
Author: Jaime Lennox <jaime.lennox@smarkets.com> 
Date:   Mon Jul 23 11:46:41 2018 +0100 

    marge-bot: bump to version 0.7.0 

    There's a new version of Marge available, so let's update our in-house 
    version to match. 

    Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com> 
   



Optional Features: Bisect with --add-tested

commit ca582b7ab9f03f496509291b1fa2e8f768a76f05  
Author: Jaime Lennox <jaime.lennox@smarkets.com> 
Date:   Mon Jul 23 11:46:41 2018 +0100 

    marge-bot: bump to version 0.7.0 

    There's a new version of Marge available, so let's update our in-house 
    version to match. 

    Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com> 
    Tested-by: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727> 
   



Optional Features: Revert with --add-part-of

commit 088bf8546b73b559322a8744e867cf8949fe6225 
Author: Jaime Lennox <jaime.lennox@smarkets.com> 
Date:   Mon Jul 23 11:46:41 2018 +0100 

    marge-bot: bump to version 0.7.0 

    There's a new version of Marge available, so let's update our in-house 
    version to match. 

    Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com> 
    Tested-by: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727> 
    Part-of: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727> 



Then it's just a bunch of git aliases!
git config --global alias.bisect-run-tested \ 
    'f() { git bisect run /bin/sh -c 
             "if !(git log -1 --format %B 
                 | fgrep -q \"Tested-by: Marge Bot\"); 
              then exit 125; 
              else "$@"; fi"; }; f' 

git config --global alias.mr-revs \ 
    '!f() { git log --grep "^Part-of.*/""$1"">" --pretty="%H"; }; f' 
git config --global alias.mr-url \ 
    '!f() { git log -1 --grep "^Part-of.*/""$1"">" --pretty="%b" | 
      grep "^Part-of.*/""$1"">"  | sed "s/.*<\\(.*\\)>/\\1/"; }; f' 
git config --global alias.revert-mr \ 
    '!f() { REVS=$(git mr-revs "$1"); URL="$(git mr-url "$1")"; 
        git revert --no-commit $REVS; 
        git commit -m "Revert <$URL>$(echo;echo; echo "$REVS"  
           | xargs -I% echo "This reverts commit %.")"; }; f' 



What if you can't use Marge-bot (not on Gitlab)?



What if you can't use Marge-bot (not on Gitlab)?

● At least now you know what you're missing ;) 
● If you don't need something general, roll-your-own is often pretty easy 

● we more or less did that at my last 3 employers 
● Also, we welcome PRs to https://github.com/smarkets/marge (github backend 

would be cool, and probably straightforward!) 
● Similar tools might exists; e.g. for github there's also Rust's homu

https://github.com/smarkets/marge
https://github.com/barosl/homu


Summary

● A good PR workflow runs tests against “future” master not just the feature branch 
● good ≠ common (but now you know you want it and how to get it!) 
● https://github.com/smarkets/marge-bot will do it for gitlab, the way you want (merge or 

rebase-based) 
● Marge-bot can also add Trailers to show who Reviewed commit and what PR  

● Combines best of Merge and Rebase based workflows (e.g. you can still see what PR 
commits belonged to) 

● Extra perks: 
● git bisect that actually works (at PR level) 
● git revert that actually works (at PR level) 

● In practice: Monorepo and rebasing PRs > subrepos and merging PRs (usually)

https://github.com/smarkets/marge-bot
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Credits

● Daniel Gorin (initial 
design & 
implementation) 

● Alexander Schmolck 
(trailers, nix-based 
build, general 
maintenance)

● Jaime Lennox 
(batching, slack 
integration, general 
maintenance) 

● Marian Rusu (batching, 
build & CI 
improvements)

● all our users who submitted PRs, suggestions and bug reports

https://github.com/jcpetruzza
https://github.com/aschmolck
https://github.com/JaimeLennox
https://github.com/mrusu91


Extra Material



Gitlab Wish list

● Commit message changes should not trigger CI 
● Rebasing the target branch into the source branch should 

not reset approvals 
● Getting approver email should not require excessive perms 
● Merge API should  

● take optional expected hash of master (don't merge if it doesn't match) 
● allow overriding CI trigger and force merge (e.g. “trust me, it's tested” for batch 

mode) 
● PRs from forks are kinda broken 

● CI is on fork (which probably hasn't the right setup)



Implementation 
details...
... that I think worked well



Architecture

● keeping it simple:  
● stateless 
● no concurrency 
● crash on network or Gitlab failures (HTTP 50x) 

● rely on 
`docker run --restart=on-failure` or systemd 

● Advantages: 
● simple! (no messy python-style concurrency, linear log of actions easy to grok) 

● Disadvantages: 
● extra requests/slower (e.g. cloning big repo again after crash); not an issue for us so far 

● yield-on-sleep and retrying requests might be good complexity/benefit trade-off



ConfigArgParse: mix and match --args, ENV and config files

● Marge accepts most options as  env-var --arg or yaml config option 
● Various benefits 

● quickly override option in config file for test (e.g. new auth token) 
● config file best for complex setup, command line args sufficient for vanilla 

setup 
● Can still customize:  

● we disallow passing secrets as commandline args for security reasons

https://github.com/bw2/ConfigArgParse


Derive from namedtuples for lightweight biz logic classes

class Version(namedtuple('Version', 'release edition')): 
    @classmethod 
    def parse(cls, string): 
        release_string, edition = string.split('-', 1) 
        release = tuple(int(number) for number in release_string.split('.')) 
        return cls(release=release, edition=edition) 

    @property 
    def is_ee(self): 
        return self.edition == 'ee' 

(constructor, repr, updated-copy and enforced immutability for free)



Better mocking with state machines

class MockLab(object): 
    def __init__(self, gitlab_url=None): 
        self.api = api = ApiMock('...', initial_state='initial') 

        api.add_transition(GET('/version'), Ok({'version': '9.2.3-ee'})) 
        # [...] 
        api.add_transition( 
           GET('/projects/1234/repository/commits/%s' % rewritten_sha), 
           Ok(commit_after_pushing), 
           from_state='pushed', to_state='passed', 
        ) 
        api.add_transition( 
           GET('/projects/1234/repository/commits/%s' % rewritten_sha), 
           Ok(_commit(id=rewritten_sha, status='success')), 
           from_state=['passed', 'merged'], 
        ) 

(Nicer than typical mocking, IMO, but learning curve has kept it out of recent code)



nix: Completely reproducible (docker image) builds (w/o docker)

● fast,  correct, small  
(pick 3) 

● Travis supports it 
● drives CI and images 
● nix-shell --pure =  

 virtualenv on steroids  
- also handles non-py 
deps, e.g. git, ssh  
- actually works

https://nixos.org/nix/

