smarkets

Marge-bot: better
Git’ing with
python

Europython 2018

Alexander Schmolck
Mika Bostrom

() smarkets/marge-bot: A merge x

C' @& GitHub, Inc. [US] | https://github.com/smarkets/marge-bot

README.md

Marge-bot

Marge-bot is a merge-bot for GitLab that, beside other goodies, implements the Not Rocket Science Rule Of Software
Engineering:

automatically maintain a repository of code that always passes all the tests.

— Graydon Hoare, main author of Rust

This simple rule of thumb is still nowadays surprisingly difficult to implement with the state-of-the-art tools, and more
a way that scales with team size (also see our blog post).

() smarkets/marge-bot: A merg

C' | & Github, nc. us] Wkﬂﬁ“&@gafkwm«g wibhh Elis p&@%ure?

README.md

Marge-bot

Marge-bot is a merge-bot for GitLab that, beside other goodies, implements the Not Rocket Science Rule Of Software
Engineering:

automatically maintain a repository of code that always passes all the tests.

— Graydon Hoare, main author of Rust

This simple rule of thumb is still nowadays surprisingly difficult to implement with the state-of-the-art tools, and more
a way that scales with team size (also see our blog post).

Outline

e The typical Cl setup or going from green PRs to master

e The fix, conceptually

e Thefix, in practice: achieving familiarity, usability and scalability

e More nice stuff:
e auditing, usable git bisect & git revert

e Audience takeaways:
e Flexible & free out-of-the box solution for Gitlab (~3 mins setup)
e Solutions, DIY or otherwise if you're not on Gitlab (e.g. Github)
e Some useful Git workflow and-Pythen-patterns

9.

Why master is bad

e = subsequent PRs are built on sand
e «& bad ships to prod more likely
e X retracing your steps becomes hard (e.g. bisect)

9.

Rejects

3

&
hacks on
code

slacks patch

Smarkets Workflow (2016)

§.. Approves

reviews
patch

2 pushes straight to master

o

9.

2

hacks on
code

lslacks patch

Smarkets Workflow (2016)

Rejects Approves

reviews
patch

new
master
(broken)

€.

Master can be because

e bad workflows

(spoiler: ®marge-bot can fix that for you!)
e “flaky builds”

(non-determinism is harder to fix)

9.

Rejects

3

&
hacks on
code

slacks patch

§.. Approves

reviews
patch

Maybe do Cl... first?
And don't slack patches?

2 pushes straight to master

o

9.

3

&
hacks on
code

PR

Rejects @ Approves

RS

Fails

Cl

“Best practice” Workflow

Passes

9.

3

&
hacks on
code

PR

Rejects @ Approves

RS

Fails

Cl

Yes

But master moves!

Passes

Merge

Conflict
?

No

9.

2

hacks on
code

lPR

Rejects ¢ Approves

But master moves!
Obsoletes Cl!

i\

reviews ‘

new
master
(broken)

Fails Passes
Cl _l V

Yes Merge Logical

Conflict Conflict
? ?

3

&
hacks on
code

"R Green master the hard

Approves

W a y Merge method

o Merge commit
reVI eWS A merge commit is created for every merge, and merging is allowed as long as there are no conflicts.

Rejects

Merge commit with semi-linear history

A merge commit is created for every merge, but merging is only allowed if fast-forward merge is possible. This
way you could make sure that if this merge request would build, after merging to target branch it would also
build.

When Fast-forward merge is not possible, the user is given the option to rebase.

M C fl M t f‘i’i\ Fast-forward merge
e rge O n I C No merge commits are created and all merges are fast-forwarded, which means that merging is only allowed if
re bases the branch could be fast-forwarded.

When fast-forward merge is not possible, the user is given the option to rebase.

m aste r Default description template for merge requests ©

hd I
Fails ’
I Activate merge request approvals ©
Merge request approvals allow you to set the number of necessary approvals and predefine a list of approvers
that you will need to approve every merge request in a project.

Only allow merge requests to be merged if the pipeline succeeds
Pipelines need to be configured to enable this feature. @

Only allow merge requests to be merged if all discussions are resolved

¢ Show link to create/view merge request when pushing from the command line

2

hacks on
code

lPR

Rejects Q Approves

Green master the hard
WEY,

RS

2

rebases

Merge Conflict

master

Passes

2

m\;
> hacks on ’

code

lPR

Rejects Q Approves

Green master the hard

o

RS

Merge Conflict

rebases

master

[ENE

moved?

Sad

]

a¥a

).

9.

Sad 2
writes®

).

This is the
story of this @

).

2

&
hacks on
code

PR -
 Marge-bot makes sure

Cl tests the right thing

Rejects $ Approves

RS

Merge Conflict

rebases
NERNTES

Fails Passes
Cl

9.

2

hacks on
code

lPR

Rejects ﬂ Approves

(ENTE

N Ote) no moved?

RS

L]

rebases

Merge Conflict

master

>J

Fails Passes

Cl

\

).

2

&
hacks on
code

PR

Rejects @ Approves

RS

Merge Conflict

rebases
NERNTES

Fails

Note, no

(well technically, there is still some

master
moved?

logic for that, but just if user circumvents
process)

o

Passes

9.

How green PRs
can break
master

9.

‘ CIl FAIL ‘ Cl PASS

PR 2

-

9

‘ Cl FAIL ‘ Cl PASS
O BROKEN O GOOD

Logical Conflict

).

‘ Cl FAIL ‘ Cl PASS
O BROKEN O GOOD

-~

).

Going from Green PRs to master

e New wine into old skins: PR 1 changes a function’s APl and all its call-sites, PR 2

introduces a new call site

e Outdated coverage: PR1 improves test coverage, PR2 changes the API

e Fragile Baseclass: PR1 makes internal changes to how Klass is implemented; PR2
adds some functionality to SubKlass that breaks because e.g. Klass.f no longer calls

Klass.g internally.

None of these will cause merge conflicts or (feature-branch) Cl failures; you’ll find out
there is a logical conflict after successful merge to master.

9.

Running Marge-bot (in 3mins or less)

1. Create marge-bot ssh key and gitlab account/token

&} Edit - Mar
clo
&) GitLab

f Admin Area

oo i
oo Overview

ge Bot
git.corp.smarkets.com
Projects v Groups

Activity Milestones Snippets

A Area > Users

Edit user: Marge Bot

Account
Name
Username
Email
Password
Password
Password confirmation
Access

Projects limit

Can create group

Access level

4

Marge Bot

* required

marge-bot

* required

marge-bot@smarkets.com

* required

Regular

Regular users have access to th{

¢ Admin

v GitLab Projects v Groups Activity Milestones Snippets V4

)‘ Admin Area Admin Area > Users

99 Overview Marge Bot (Admin)

Proje Account Grouy ojects SSHkeys Identitic
Users
Groups a marge-bot@invalid
‘ €2:41:7d:43:5b:36:7¢:b2:93:ec:16:41:a9:fa:71:ab
Jobs last used: about 5 hours ago
ConvDe jex
& Monitor
) Message
& Systen ok

Groups Activity Milestones Snippets [’

Admin Area > Users

Marge Bot (Admin)

Account Groups and projects SSH keys Identities Imper:

Add a impersonation token
Pick a name for the application, and we'll give you a unique impersc

Name

Expires at

Scopes
v api Access the authenticated user's API

Full access to GitLab as the user, including read/write on all their gr
v read_user Read the authenticated user's personal information

Read-only access to the user's profile information, like username, p
v sudo Perform API actions as any user in the system (if the authel

Access to the Sudo feature, to perform API actions as any user in tf

y.

Running Marge-bot (in 3mins or less)

1. Create marge-bot ssh key and gitlab account/token

2.
docker run --restart=on-failure \

-—env-file=<(
echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
smarkets/marge-bot \
——gitlab-url="http://your.gitlab.instance.com'

).

Running Marge-bot (in 3mins or less)

1. Create marge-bot ssh key and gitlab account/token

2.
docker run --restart=on-failure \

-—env-file=<(
echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
smarkets/marge-bot \
——gitlab-url="http://your.gitlab.instance.com'

3. Add marge-bot as a user (dev or master) to your project(s)

).

Demo of assigning
PR to marge-bot

9.

Conceptual Fix is simple

e Maintain a queue of pull requests
e Before merging a PR
® rebase latest master into PR branch
e wait for Cl to pass
e Profit!
e master will be always green (unless some tests are flaky)

9.

Making it work practice (Usability/Familiarity)

o Familiarity
e use normal gitlab flow, but assign to Marge-bot rather than pressing “merge after Cl
passes” (will make sure Cl passed and branch has been reviewed)
e Fair amount of behind-the-scenes work to bend Gitlab API to our will (not designed with
this use case in mind; race conditions, need)

e Usability
e Gitlabusernameis “ marge-bot?” (initial space, sorts first in list of users, so quick to
assign to)

e Marge leaves comments telling you if there is a problem (Cl failed, no approval, conflict...)
e we have a Slack channel that shows the Merge queue maintained by Marge (so place in
queue/ETA easy to find

9.

Making it work practice (Scalability)

e Scalability (via Batching)

rebasing all open PRs on merge/rebase to master and re-running Cl works fine
for up to a dozen devs and Cl tests that take a few mins
beyond that too much load on gitlab and CI build slaves
solution: create a “synthetic” batch merge request of top of queue PRs that
have passed branch Cl already; make synthetic branch top of queue

e omit PRs that cause merge conflicts

e f tests pass, merge all individual PRs (bypassing Cl)

o ftestsfail, split

e ineither case, throw away “synthetic” branch

9.

‘ Cl FAIL ‘ Cl PASS
O BROKEN O GOOD

).

‘ Cl FAIL ‘ Cl PASS
O BROKEN O GOOD

PR1

).

Temp branch

‘ Cl FAIL ‘ Cl PASS
O BROKEN O GOOD

merge conflicts

failed Cl& :

).

That’s
basically it!

Green Master!

9.

Our workflow
requirements at
Smarkets

9.

Productivity Requirements
Code must flow:

e 70devs, 11 teams, ~130 services
e Commits every few mins

e ~10shipsto prod/day

e want to preserve velocity

Your Projects Starred Proj

Push events Merge events I vents Comment: Team

Marge Bot pushed to branch mobile-add-card-for-everyone at smarkets / smarkets

c7e381b4 - mobile: allow all users to access add new card page

Valerio pushed new branch mobile-add-card-for-everyone at smarkets / smarkets

Daniel Ghita pushed to branch dan.market-graphs at smarkets / smarkets
ba47074a - web: add market charts

Sam Jones pushed to branch popular-categories-change at smarkets / smarkets
65e4aca4 - marketing: Fix popular events logging

Sam Jones pushed to branch popular-categories-change at smarkets / smarkets
cd89ce89 - marketing: Fix popular events logging
... and 16 more commits. Compare 7cca9a30...cd89ce89

- Tornike Gogniash pushed to branch push-mvp at smarkets / smarkets
7ed90311 - notification: Few fixes and refactors

Marge Bot pushed to branch master at smarkets / smarkets
67d917ad - Golf market names

Marge Bot pushed to branch golf_name at smarkets / smarkets
67d917ad - Golf market names
... and 16 more commits. Compare 6588be23...67d917ad

Marge Bot pushed to branch master at smarkets / smarkets
€5393f00 - mobile: bump version number 2.1.0 (4)
... and 11 more commits. Compare 91b982ea...e5393f0

Marge Bot pushed to branch release-adjustments at smarkets / smarkets
e5393f00 - mobile: bump version number 2.1.0 (4)
... and 17 more commits. Compare fbbdlc 5393f00

Marge Bot pushed to branch marge_bot_batch_merge_job at smarkets / smarkets
1b5cc6c4 - Golf market names

N

less than a minute ago

4 minutes ago

4 minutes ago

5 minutes ago

8 minutes ago

10 minutes ago

20 minutes ago

21 minutes ago

21 minutes ago

22 minutes ago

28 minutes ago

9.

Audits & Auditors

e We'rein aregulated industry

® Requirements vary by country
e Goal#1: meetall atonce

e Goal #2: don’t cripple workflow

€.

Regulatory Requirements
Auditors may want to know:
Who wrote this code and when?

Who signed it off?
How was it validated?

Why was it needed?
When was it deployed and by whom?
Who approved the deployment?

In fact fact you might well want to know these things, even if you’re not audited!

9.

Regulatory Requirements

Auditors may want to know:

Git-out of the box

Who wrote this code and when?
Who signed it off?
How was it validated?

Gitlab + Marge-bot (git trailers)

Why was it needed?

Who approved the deployment?

In fact fact you might well want to know these things, even if you’re not audited!

).

Common thread: compliance centred around git

e Cryptographic

e Familiar

e Flexible

e Platform agnostic

9.

Git
workflows

Theory vs Practice

9.

Theory

e Main repo as a collection of subrepos of independently developed (micro-)services/libs is a
Good Idea
e Macro-view of all that will run in prod in the main repo
e Micro-view of individual services in subrepo
e justyourservice’s history/code, no need to check out GiBs etc.
e cansimplify and speed up CI
e Merging (feature) branches (into master) is a Good Idea
e Macro-view of features on master
e Micro-view of implementation steps in branch
e historyisinviolate!

9.

Practice

9.

SAY GIT SUBMODULE UPDATE INIT - e
RECURSIVE | “E“SII:'I::! ;:IlII:IESE GITG 00 gl e lma ge

Search for .
) submodules

o A
.
N
\

o,

0 0 memegenerator.net

i rias

’ (R
PATA I(AIII) H1 SIIBMIIIIIll!
urnmn»nm KINAHI), .

Just go Monorepo, don’t resist assimilation

VI R
Wb N Wi
) ‘. '*1&; N =

).

Date: Fri, 19 Dec 2008 00:45:19 -0800
From: Linus Torvalds <torvalds€linux-foundation.org>, Junio C Hamano <gitster@pobox.com>
Subject: Re: Odd merge behaviour involving reverts
Abstrac Sometimes a branch that was already merged to the mainline
is later found to be faulty. Linus and Junio give guidance on
recovering from such a premature merge and continuing development
after the offending branch is fixed.
Message-ID: <7vocz8a6zk.fsfl@gitster.siamese.dyndns.org>

References: <alpine.LFD.2.00.0812181949450.14014@1localhost.localdomain>
Content-type: text/asciidoc

How to revert a faulty merge

Alan <alan@clueserver.org> said

I have a master branch. We have a branch off of that that some
developers are doing work on. They claim it is ready. We merge it
into the master branch. It breaks something so we revert the merge.

They make changes to the code. they get it to a point where they say
it is ok and we merge again.

When examined, we find that code changes made before the revert are

not in the master branch, but code changes after are in the master
branch.

and asked for help recovering from this situation.

The history immediately after the "revert of the merge"” would look like
this:

where A and B are on the side development that was not so good, M is the
merge that brings these premature changes into the mainline, x are changes
unrelated to what the side branch did and already made on the mainline,
and W is the "revert of the merge M"

(doesn't W look M upside down?).
IOW, ~"diff W*..W"" is similar to “"diff -R M"..M"".

Such a "revert" of a merge can be made with:

$ git revert -m 1 M

After the developers of the side branch fix their mistakes, the history
may look like this:

D

where C and D are to fix what was broken in A and B, and you may already
have some other changes on the mainline after W.
If you merge the updated side branch (with D at its tip), none of the

changes made in A or B will be in the result, because they were reverted
by W. That is what Alan saw.

https://github.com/qit/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt

Linus explains the situation:

Reverting a regular commit just effectively undoes what that commit
did, and is fairly straightforward. But reverting a merge commit also
undoes the _data_ that the commit changed, but it does absolutely
nothing to the effects on _history_ that the merge had.

So the merge will still exist, and it will still be seen as joining
the two branches together, and future merges will see that merge as
the last shared state - and the revert that reverted the merge brought
in will not affect that at all.

e data changes, but
t it doesn't undo
the repository history.

it's very much _nof
the etfects of a commit on

So if you think of "revert" as "undo!
miss this part of reverts.

undo history.

", then you're going to always

Yes, it undoes the data, but no, it doesn't

In such a situation, you would want to first revert the previous revert,
which would make the history look like this:

- ¥

where Y is the revert of W. Such a "revert of the rever
withs

s git revert W

This history would (ignoring possible conflicts between what W and W
changed) be equivalent to not having W or Y at all in the history

-

and merging the side branch again will not have conflict arising from an
earlier revert and revert of the

M-

Of course the changes made in C and D still can conflict with what was
done by any of the x, but that is just a normal merge conflict.

On the other hand, if the deve
faulty A and B, and redone th
after the revert, the

opers of the side branch discarded t
hanges on top of the updated main:
istory would have looked like this:

in the previous example:

9.

https://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt

Reverting PRs the marge-bot way

git revert-mr 123

9.

Which one would
you rather do when
prod is broken?

9.

Now which PR actually broke this? (plain git way)

e |know,I'llusegit bisect runtofindout

e Only look at merge commits to master? Needs 3rd party tool.
e Feature branch commits will often not have passed Cl, will get false positives.

).

Now which PR actually broke this? (marge-bot way)

git bisect-run-tested ./test.sh

Only runs on commits that passed ClI
(marge-bot can add Tested-by: trailer to last commit of PR if you have mandatory Cl switched on in Gitlab)

9.

How does it
work?

9.

Recap: bare bones marge setup

docker run --restart=on-failure \
—-—env-file=<(
echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
smarkets/marge-bot \
——gitlab-url="http://your.gitlab.instance.com'

).

More --args, more features!

docker run --restart=on-failure \
-—env-file=<(
echo MARGE_AUTH_TOKEN="$(cat marge-bot.token)";
echo MARGE_SSH_KEY="$(cat marge-bot-ssh-key)") \
smarkets/marge-bot \

—-—gitlab-url="http://your.gitlab.instance.com' \
——-batch \ Try to optimistically batch several PRs for faster CI

——add-part-of \ Adds a"Part-of: <PR-url>" Trailer to commits
-—add-tested \ Adds a “Tested-by: <PR-url>" Trailer to final commit in PR
——add-reviewers \ Adds a“Reviewed-by: <guy who approved PR>" Trailer to commits
—=1 mpersonate—-approvers Re-approve after rewriting commits to add Trail'ers
S

’

Bare bones commit

commit 5ddc293ec55408ecclOleact6495421a16182633
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

marge-bot: bump to version 0.7.0

There's a new version of Marge available, so let's update our in-house
version to match.

9.

Optional Features: Audit with --add-reviewers

commit 146891a956fd35cf8ab6445d7ec76fddf4230925
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

marge-bot: bump to version 0.7.0

There's a new version of Marge available, so let's update our in-house
version to match.

Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com>

).

Optional Features: Bisect with --add-tested

commit ca582b7ab9f03f496509291blfa2e8f768a76f05
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

marge-bot: bump to version 0.7.0

There's a new version of Marge available, so let's update our in-house
version to match.

Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com>
Tested-by: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727>

).

Optional Features: Revert with --add-part-of

commit 088bf8546b73b559322a8744e867cf8949fe6225
Author: Jaime Lennox <jaime.lennox@smarkets.com>
Date: Mon Jul 23 11:46:41 2018 +0100

marge-bot: bump to version 0.7.0

There's a new version of Marge available, so let's update our in-house
version to match.

Reviewed-by: Tornike Gogniashvili <tornike.gogniashvili@smarkets.com>
Tested-by: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727>
Part-of: <https://git.corp.smarkets.com/smarkets/smarkets/merge_requests/9727>

).

Then it's just a bunch of git aliases!

git config --global alias.bisect-run-tested \
'f() { git bisect run /bin/sh -c
"if !(git log -1 —--format %
| fgrep -q \"Tested-by: Marge Bot\");
then exit 125;
else "s@"; fi"; }; f'

git config --global alias.mr-revs \
"1f() { git log —-—grep ""Part-of.x/""$1"">" —-pretty="%H"; }; f'
git config --global alias.mr-url \
"If() { git log -1 —--grep ""Part-of.*x/""S$1"">" —-pretty="%b" |
grep "APart—of.*/""$1"">" | sed HS/.*<\\(.*\\)>/\\1/H; }; f1
git config --global alias.revert-mr \
"1f() { REVS=$(git mr-revs "$1"); URL="S$(git mr-url "$1™)";
git revert -—-no-commit S$REVS;
git commit -m "Revert <$URL>$(echoj;echo; echo "$SREVS"
| xargs -I% echo "This reverts commit %.")"; }; f'

).

What if you can't use Marge-bot (not on Gitlab)?

9.

What if you can't use Marge-bot (not on Gitlab)?

e At least now you know what you're missing ;)
e Ifyou don't need something general, roll-your-own is often pretty easy
e we more or less did that at my last 3 employers
e Also, we welcome PRs to https://github.com/smarkets/marge (github backend
would be cool, and probably straightforward!)
e Similar tools might exists; e.g. for github there's also Rust's homu

9.

https://github.com/smarkets/marge
https://github.com/barosl/homu

Summary

e Agood PR workflow runs tests against “future” master not just the feature branch
e goodZcommon (but now you know you want it and how to get it!)
e https://github.com/smarkets/marge-bot will do it for gitlab, the way you want (merge or
rebase-based)
e Marge-bot can also add Trailers to show who Reviewed commit and what PR
e Combines best of Merge and Rebase based workflows (e.g. you can still see what PR
commits belonged to)
e Extra perks:
e git bisect that actually works (at PR level)
e git revert that actually works (at PR level)
e In practice: Monorepo and rebasing PRs > subrepos and merging PRs (usually)

9.

https://github.com/smarkets/marge-bot

() smarkets/marge-bot: A merg

C' | & Github, nc. us] Wkﬂﬁ“&@gafkwm«g wibhh Elis p&@%ure?

README.md

Marge-bot

Marge-bot is a merge-bot for GitLab that, beside other goodies, implements the Not Rocket Science Rule Of Software
Engineering:

automatically maintain a repository of code that always passes all the tests.

— Graydon Hoare, main author of Rust

This simple rule of thumb is still nowadays surprisingly difficult to implement with the state-of-the-art tools, and more
a way that scales with team size (also see our blog post).

O smarkets/marge-bot: A merg

o womn et pipptlsmRsrIING with this p&t&ure?

READ

Marge-bot

Marge-bot is a merge-bot for GitLab that, beside other goodies, implements the Not Rocket Science Rule Of Software
Engineering:

automatically maintain a repository of code that always passes all the tests.

— Graydon Hoare, main author of Rust

This simple rule of thumb is still nowadays surprisingly difficult to implement with the state-of-the-art tools, and more
a way that scales with team size (also see our blog post).

Credits

e Daniel Gorin (initial e Jaime Lennox

design & (batching, slack -

implementation) integration, general v

maintenance) N ‘
e Alexander Schmolck e Marian Rusu (batching,
(trailers, nix-based build & Cl
build, general improvements)

maintenance)

e all ourusers who submitted PRs, suggestions and bug reports

-

9

https://github.com/jcpetruzza
https://github.com/aschmolck
https://github.com/JaimeLennox
https://github.com/mrusu91

Extra Material

9.

Gitlab Wish list

e Commit message changes should not trigger CI
e Rebasing the target branch into the source branch should
not reset approvals
e Getting approver email should not require excessive perms
e Merge API should
e take optional expected hash of master (don't merge if it doesn't match)
e allow overriding Cl trigger and force merge (e.g. “trust me, it's tested” for batch
mode)
e PRsfrom forks are kinda broken
e Clisonfork (which probably hasn't the right setup)

9.

Implementation
details...

... that | think worked well

9.

Architecture

e keepingitsimple:

o stateless

® NoOconcurrency

e crash on network or Gitlab failures (HTTP 50x)

e rely on
"docker run --restart=on-failure’ or systemd

e Advantages:

e simple! (no messy python-style concurrency, linear log of actions easy to grok)
e Disadvantages:

e extrarequests/slower (e.g. cloning big repo again after crash); not an issue for us so far
e yield-on-sleep and retrying requests might be good complexity/benefit trade-off

9.

ConfigArgParse: mix and match --args, ENV and config files

e Marge accepts most options as env-var --arg or yaml config option
e Various benefits
e quickly override option in config file for test (e.g. new auth token)
e configfile best for complex setup, command line args sufficient for vanilla
setup
e Can still customize:
e we disallow passing secrets as commandline args for security reasons

9.

https://github.com/bw2/ConfigArgParse

Derive from namedtuples for lightweight biz logic classes

class Version(namedtuple('Version', 'release edition')):
@classmethod
def parse(cls, string):
release_string, edition = string.split('-', 1)

release = tuple(int(number) for number in release_string.split('."'))
return cls(release=release, edition=edition)

@property

def is_ee(self):
return self.edition == 'ee'

(constructor, repr, updated-copy and enforced immutability for free)

9.

Better mocking with state machines

class MockLab(object):
def __init__(self, gitlab_url=None):
self.api = api = ApiMock('...', initial_state='initial')

api.add_transition(GET('/version'), Ok({'version': '9.2.3-ee'}))
[...]
api.add_transition(
GET('/projects/1234/repository/commits/%s' % rewritten_sha),
Ok (commit_after_pushing),
from_state='pushed', to_state='passed',
)
api.add_transition(
GET('/projects/1234/repository/commits/%s' % rewritten_sha),
Ok(_commit(id=rewritten_sha, status='success')),
from_state=['passed', 'merged'],

(Nicer than typical mocking, IMO, but learning curve has kept it out of recent code)

).

nix: Completely reproducible (docker image) builds (w/o docker)

{ pkgs ? import ./pinnedNixpkgs.nix }:
let callPackage = pkgs.lib.callPackageWith (pkgs);
fast, correct, small

marge = callPackage ./marge.nix {};
(p|Ck 3) version = marge.version;
. . in
TraV|S SuppOI’tS It pkgs.dockerTools.buildImage {
drives CI and imageS name :""smar‘k?ts/Targe—bot";
tag = "${version}";
nix-she“ --pure = # minimal user setup, so ssh won't whine 'No user exists for uid @'

runAsRoot = "'

virtualenv on steroids #13{pkgs. stdenv.shelL}

_ alSO handles non_py ${pkgs.dockerTools.shadowSetup}
mkdir -p /root/.ssh

deps, e.g. git, ssh "

contents = [marge pkgs.bash pkgs.coreutils pkgs.openssh pkgs.glibclLocales];

- actually works config - {

Entrypoint = ["/bin/marge.app"];
Env = ["LANG=en_US.UTF-8" ''LOCALE_ARCHIVE=/lib/locale/locale-archive''];

};

https://nixos.org/nix/

