JavaScript for Python
Developers

EuroPython
26th July, 2018

Zan Anderle
Twitter: @z _anderle

Raise your hand If...

JavaScript and Python
developers

Jaze Jose Aguinaga

Web Engineer. Previously @numbrs, @plaidhg, @getflynt, currently @My3Bit_DApp. Javascript,
N\ , #people, startups, fintech, privacy, blockchain.
7

~—— Oc: 2, 2016 - 13 min read

How it feels to learn JavaScript in 2016

~

> W L e

3"RAOA B

@ @ JS Q o Q
3 o A)3 S I A«

st AN _ s ws

No JavaScript frameworks were created during the writing of this article.

https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f

WHALIS, THIS?

mnrsrtwnomox:: IT'S ABOUT,
JAVASCRIPT CONTEKT .c.oo0 et

.

-
-
. .

JAVASCRIPT

B

‘?

2

4

- ’
—— 50 \
v % ' o o‘ ’
». .

JAVAS CRIPT{EVERYWHERE

makeameme.org

Overview

JavaScript history and versions
Basics of the language
JavaScript ecosystem

How to make sense of it all?

. Zan Anderle @ EuroPython @z_anderle - Apr 19 o
' % Thinking about ideas for talks/tutorials at @djangocon . Wondering if Django +

Angular would still be interesting? And whether that's better as a tutorial or a
talk?

Hmm, what might be some other talk or tutorial ideas?

QO 4 [Q 10 1] 7

Ed Rivas

@je92rivas

mv

&

Replying to @z_anderle @djangocon

How about "JavaScript for Python
developers"? Bet it would be valuable to
those diving into frontend development or
just JS in general.

11:52 PM - 19 Apr 2018

5 Likes ﬁ a Q .e

QO 1 M O 5 ~

Overview

e JavaScript history and versions

Date

Edition] Changes from prior edition
published
1 June 1997 | First edition
2 June 1998 | Editorial changes to keep the specification fully aligned with ISO/IEC 16262 international standard
3 December | Added regular expressions, better string handling, new control statements, try/catch exception handling,

1999 tighter definition of errors, formatting for numeric output and other enhancements

Fourth Edition was abandoned, due to political differences concerning language complexity. Many features
4 Abandoned | proposed for the Fourth Edition have been completely dropped; some are proposed for ECMAScript
Harmony.

Adds "strict mode," a subset intended to provide more thorough error checking and avoid error-prone
December | constructs. Clarifies many ambiguities in the 3rd edition specification, and accommodates behaviour of real-

5
2009 world implementations that differed consistently from that specification. Adds some new features, such as
getters and setters, library support for JSON, and more complete reflection on object properties.°!
This edition 5.1 of the ECMAScript standard is fully aligned with third edition of the international standard
5.1 June 2011
ISO/IEC 16262:2011.
The sixth edition, initially known as ECMAScript 6 (ES6) and later renamed to ECMAScript 2015
(ES201 5)[101 adds significant new syntax for writing complex applications, including classes and modules,
June but defines them semantically in the same terms as ECMAScript 5 strict mode. Other new features include
6 o015L10] iterators and fox/of loops, Python-style generators and generator expressions, arrow functions, binary data,
typed arrays, collections (maps, sets and weak maps), promises, number and math enhancements,
reflection, and proxies (metaprogramming for virtual objects and wrappers). As the first "ECMAScript
Harmony" specification, it is also known as "ES6 Harmony."
June ECMAScript 2016 (ES201 6)["], the seventh edition, intended to continue the themes of language reform,
7 5016111] code isolation, control of effects and library/tool enabling from ES2015, includes two new features: the
exponentiation aperator (**) and Array.prototype.includes.
June ECMAScript 2017 (ES2017), the eighth edition, includes features for concurrency and atomics, syntactic

2017'8] integration with promises (async/await).!' 28]

Overview

JavaScript history and versions
Basics of the language
Different tools

How to make sense of it all?

Syntax

let myName = 'EuroPython 2018";
function sayHi1 (name) {
console.log(Hey there, S{name}) ;

J

sayHi (myName); // 'Hey there, EuroPython 2018';

let someArray = [1, 2, 5, 10];
let newArray = [];

for (let el of someArray) {
if (el > 2) |
newArray.push (el) ;
} else {
console.log('Nope! ") ;

}
}
// 'Nope!'
// 'Nope!'

Syntax

constructor (name, superPower) |{

this.name = name;
this.superPower = superPower;
}
superPower () {
console.log ('l can count really fast!');
let count = 0;
while (count < 1000) {
count++;

J

return count;

J
J

let superMan = new Hero('SuperMan');

superMan. superPower () ;

// 'I can count really fast!'
// 1001

Syntax

1; // x 1s a number

'Hi!'; // x 1s now a string

=> { return 1; }; // X 1s now a

function

> 1 +
119 1

> 1
119 0

> 1

10

Syntax

I2l
+ 2

+ 2 - 2

WELCOME TO JAVASCRIPT

i

WHERE THE OBJECTS|RRE MADE
UPANDTHESTY PES!DON;T:MATTER?

Variables

var xXx = 1;
let name = "John';
const someConstant = 45;

Variable hoisting

var Xx;
1; var name;
X = 1;

var X

// Some other code
// Some other code

var name = '"Jonhn';
name = '"'John';

Variable hoisting

var tXt — I:"a.","b","C"];
for (var 1 = 0; 1 < 3; ++1) {
var msg = txt[i];
setTimeout (function () { alert(msg); }, 1*1000);

J

// Alerts '¢', 'c', 'c

Data lypes

Bool let a = true;

colean let b = false;

String let name = 'John';
name.length; // 4

Number let num = -124.56;
num = 10;

Null

let empty = null;
Undefined let unknown = undefined;

_ let something = {key: "A value', anotherKey: name};
Object let things = ['string', 2, (x, y) => { return x + v; }1;

Object literal

let bigObj = {
key: '"Some string',
add: function(x, vy) { return x
anotherObj: |
name: 'I am a nested object'

}
by

b

Objects are mutable

X = {a: 1}
» {a: 1}
2 Yy = X,
» {a:r 1}
> Y.b = 2
2
> X
» {a:r 1, b: 2}

Operators

if (la && b) {
// Some code

} else 1£f (a || b) |
// Some code

}

Operators

== and !=
OR

=== and !::

Operators

J B gy false

" T Fryue

"CI ":" " trdE

"false ‘false'” false
"false k" true

"false == yndefined"” => false

i
D

1
"false == null” => fal
1

1 '‘undefined'” => false

let

by

let
let

func
return a + b;

rTunc

rTunc

Functions

function (a4,

D) A

return a + b;

by

Functions

function func(a = 1, b = 2) {
return a + Db;

}

func (5); // 7

Functions

function func(a = 1, b = 2) {
// Do some calculations

}

func (5); // undefined

this

> var pets = {

names: ['Baron', 'Chief', 'Axel'],

owner: 'Jason’',

description: function(){
return this.names.map(function(pet){

return "${this.owner} knows an awesome dog named ${pet}.’

});

}

};

pets.description()

["undefined knows an awesome dog named Baron.'", "undefined knows
» an awesome dog named Chief.", "undefined knows an awesome dog
named Axel."]

this

JS javascript.js @ 1] -
1 let pets = {
2 names: ['Baron', 'Chief', 'Axel'l],
3 owner: 'Jason’,
4 description: function () {
5 | let that = this;
6 return this.names.map(function (pet) {
7 ' return “${that.owner} knows an awesome dog named ${pet}.’
8 1) ;
9 }
10 i
11 pets.description();

o
NJ

this

JS javascript.s @ [T] -
1 let pets = {
2 names: ['Baron', 'Chief', 'Axel'],
3 owner: 'Jason’,
4 description: function () {
5 return this.names.map((pet) => {
6 | return “${this.owner} knows an awesome dog named ${pet}.’
7 }); .
8 }
g b
10 pets.description();
11

[""Jason knows an awesome dog named Baron.'", "Jason knows an
» awesome dog named Chief.", "Jason knows an awesome dog named
Axel."]

Classes

@ python.py @ T - javascript.js
1 class Animal: 1 class Animal {
2 def init (self, name): 2 constructor(name) A
3 self.name = name 3 this.name = name;
4 4 }
5 def say_hi(self): 5
6 print('Hi {}'.format(self.name)) 6 sayHi() {
7 7 console. log('Hi ${this.name}");
8 class Dog(Animal): 8 }
9 pass — 9 s
10 10
11 dog = Dog('Billy"') 11 class Dog extends Animal {
12 dog.say_hi() 12
13 13 ¥
14
15 let dog = new Dog('Billy');
16 dog.sayHi();

=
~J

Modules

@ python.py javascript.js @ [T] e
1 from animals import Dog
2 + export class Dog extends Animal { -
3 dog = Dog('Billy") L }
4

import { Dog } from 'animals';

0O 0O~ Oy U AN =

dog = new Dog('Billy');

o
S

Template literals

var a
var D

console.lo

not S{2

// "Fif
// not

o

10;

og(Fifteen is ${a + b} and
*a + bl.);

"teen 1s 15 and
20."

let a
let Db

console.

.)

b) +

o)
10;

Template literals

"teen 1S

log ("F1i:

// "Fifteen is 15 and
// not 20."

'+

(a + b)

| V

and\nnot " +

(2 * a +

Promises

javascript.js @ M
1 // getPage returns a Promise
2 let loadPageContents = getPage(someUrl).then((result) => {
3 return doSomething(result);
4 }).catch((error) => {
5 handleError(error);
6 });
7/
8 // loadPageContents 1s a Promise
9 loadPageContents().then(() => {
10 changeElementOnPage();
11 r);

=
N

Overview

JavaScript history and versions
Basics of the language
Different tools

How to make sense of it all?

Bad Parts

Global variables

L i FAATITET

scope

O'REILLY " / YAFOOY! PRESS Douglas Crockford

TypeScript

function greeter(person: string) {
return "Hello, " + person;

}

let user = [0, 1, 2];

document.body.innerHTML = greeter(user);

Overview

JavaScript history and versions
Basics of the language
Different tools

How to make sense of it all?

Different tools

* Nnpm, bower, yarn
e Babel

 Webpack

* gulp, grunt

Different tools

* Nnpm, bower, yarn
e Babel

 Webpack

* gulp, grunt

Different tools

* Nnpm, bower, yarn
e Babel

 Webpack

* gulp, grunt

Different tools

* Nnpm, bower, yarn
e Babel

 Webpack

* gulp, grunt

Different tools

* Nnpm, bower, yarn
e Babel

 Webpack

* gulp, grunt

Overview

JavaScript history and versions
Basics of the language
Different tools

How to make sense of it all?

How to get started

e Start somewhere
* Prepare your codebase

 No need to learn and use everything at once

Thank you!
Questions?

