
7/13/17

1

Infrastructure	Design	Patterns	with	
Python,	Buildbot,	and	Linux	

Containers
David	Liu
Python	Technical	Consultant	Engineer	
Intel	Corporation

Overview

• Introduction
• Breaking	out	of	CI:	Infrastructure	Design	patterns	with	Buildbot
framework	pieces
• Hooking	things	up	in	weird	ways:	Ports,	multi-masters,	and	pseudo-
RPC
• When	things	don’t	fit:	Linux	Containers,	and	keeping	things	movable
• Pulling	it	all	together	with	Python
• Real-world	architectures	that	have	worked	
• Summary



7/13/17

2

Introduction:	On	Infrastructure

•What	does	it	mean	to	have	infrastructure?	
• Is	it	automation?	Is	it	orchestration?	Is	it	task	runners?
• Many	options	exist	depending	on	what	“needs”	you	have	
• Full	on	orchestration	with	Chef,	Puppet
• Dask,	IPyParallel,	Joblib (These	are	mostly	numerical)
• Celery,	Kafka

•Many	of	these	examples	are	heavy-handed	or	square	
peg/round	hole	problems

On	Infrastructure	(con’t)

• Examples
• Trying	to	get	a	distributed	task	system	such	as	Dask to	run	a	CRON	
is	not	exactly	the	best	use	case
• Trying	to	get	Celery	to	do	a	map-reduce	operation
• Trying	to	get	puppet	to	make	a	task	graph

• In	essence,	every	one	of	these	frameworks	are	meant	for	
vastly	different	things!



7/13/17

3

Breaking	out	of	CI:	Infrastructure	Design	
patterns	with	Buildbot
• Buildbot is	normally	meant	for	Continuous	Integration	(CI),	but	you	
can	construct	things	out	of	the	elements	in	weird	ways.		
• Just	like	Lego	blocks	for	infrastructure;	this	differs	heavily	from	things	
such	as	Jenkins	or	TeamCity
• CI	Tasks	normally	encompass	interesting	pieces:	A	scheduler,	
dependencies,	a	result
• However,	these	main	task	components	are	actually	composed	of	
many	other	primitives	that	have	been	assembled	together

Breaking	out	of	CI:	Infrastructure	Design	
patterns	with	Buildbot (Con’t)

• Resource	pools
• Roles	and	triggers
• Task	runners
• Distributed	System	+	
communications
• State	Logic

• Change	triggers
• Schedulers
• Build	steps	(scripting	steps)
•Master/worker	system
• Barriers	and	semaphores
• Dependency	tree

Examples:



7/13/17

4

Breaking	out	of	CI:	Infrastructure	Design	
patterns	with	Buildbot (Con’t)
• Because	Buildbot splits	all	these	items	up,	one	may	be	able	to	wire	
the	components	up	in	unusual	ways	to	meet	commonly	occurring	
infrastructure	patterns

• Warning:	Before	going	any	farther,	I	want	to	reiterate	that	what	I	am	
about	to	show	is	conceptual and	used	for	proof-of-concepts,	and	is	no	
replacement	for	sound	orchestration	and	proper	security	
• This	is	considered	a	very	“off	use”	of	Buildbot (and	was	not	intended	
by	the	developers),	so	just	be	mindful	of	this

Breaking	out	of	CI:	Infrastructure	Design	
patterns	with	Buildbot (Con’t)
• Infrastructure	design	patterns	are	the	common	tasks/roles,	and	
interconnects	that	occur	in	software	deployments
• Using	Buildbot is	just	one way	of	solving	such	examples
• One	can	utilize	this	to	prototype	something	and	then	convert	it	to	enterprise-
level	deployments

• Examples:
• CI->Package->Deployment	(common	use)
• Enterprise	application	deployment
• License	Server
• Linux	Session	launching/landing	on	Servers
• Home	Weather	Server	w/	Machine	Learning	tasks



7/13/17

5

Hooking	things	up	in	weird	ways:	Ports,	multi-
masters,	and	pseudo-RPC
• Normally,	most	CI	systems	do	not	expose	such	controls,	but	because	
of	the	flexibility	in	Buildbot,	one	may	use	it	quite	freely
• The	change-port allows	for	usage	of	a	script	or	symlinked call	to	
trigger	a	task-which	gives	user-level	triggers
• By	passing	in	arguments	of	the	script	in,	one	can	essentially	“RPC”	to	
a	worker	with	a	known	resource
• i.e.	run	some	task	where	the	right	version	of	Python/NumPy is

• Buildbot is	controlled	via	the	logic	of	the	master.cfg,	which	is	
interpreted	as	majority	Python	code

Hooking	things	up	in	weird	ways:	Ports,	multi-
masters,	and	pseudo-RPC	(Con’t)
• In	the	buildmaster’s configuration,	normal	change	sources	look	like	
the	following:
• c['change_source']	=	[]
c['change_source'].append(changes.GitPoller(	
'git://github.com/buildbot/pyflakes.git',								
workdir='gitpoller-workdir',	branch='master',								
pollinterval=300))

• However,	you	can	add	a	secondary	trigger	source:
• c['change_source'].append(changes.PBChangeSource(port=9999,	
user=’myApp',	passwd=’AppPassword'))



7/13/17

6

Hooking	things	up	in	weird	ways:	Ports,	multi-
masters,	and	pseudo-RPC	(Con’t)

• Matched	with	the	“fakechange.py”	
script	in	buildbot-contrib,	one	can	
initiate	and	pass	arguments	(such	
as	X11	info,	user	info)	to	a	
buildmaster
• Utilizes	the	twisted.internet and	
twisted.spread capabilities
• Sends	change	to	the	scheduler in	
the	Buildbotmaster.cfg

Example	of	using	the	change-port	to	launch	apps



7/13/17

7

Hooking	things	up	in	weird	ways:	Ports,	multi-
masters,	and	pseudo-RPC	(Con’t)

• Multi-master	gives	the	
ability	to	chain	tasks	and	
resource	pools	together	
to	grant	capabilities	such	
as	load	balancers	to	
certain	tasks
• Don’t	hesitate	to	have	
one	task	kick	off	another	
subset	of	Buildbot
instances

Image	from	Buildbot Docs

Hooking	things	up	in	weird	ways:	Ports,	multi-
masters,	and	pseudo-RPC	(Con’t)
• Use	util.BuildFactory() to	send	commands	to	workers	via	
ShellCommand
• Note	that	the	worker	must	be	privileged	to	run	command	and	must	
have	resources,	so	define	workers	well



7/13/17

8

When	things	don’t	fit:	Linux	Containers,	and	
keeping	things	movable
• What	happens	when	things	don’t	want	to	fit	together?	or	you	have	
security	concepts	to	worry	about?
• Use	Linux	Containers	to	provide	additional	design	flexibility	through	
composition	techniques	(docker-compose,	as	an	example)
• Use	Containers	to	also	cordon	off	the	riskier	bits	(prevent	volume	
maps,	etc.)
• Provide	privilege/non-privileged	barriers	to	separate	users	from	full-
privileged	resources

When	things	don’t	fit:	Linux	Containers,	and	
keeping	things	movable	(con’t)
• At	some	point,	you	may	need	orchestration	to	pull	off	tasks,	so	just	
know	what	responsibilities	you	want	in	what	technologies
• Depending	on	how	you	approach	the	problem,	you	might	be	able	to	
get	away	with	little	or	no	orchestration
• If	all	else	fails,	you	can	somewhat	cheat	by	having	the	entire	Buildbot
+	logic	inside	of	a	container,	and	use	those	as	building	blocks



7/13/17

9

Pulling	it	all	together	with	Python

• So	with	Python	at	the	forefront,	you	can	utilize	the	Python	scripts	
injected	into	buildbot itself,	or	have	the	master.cfg unpack code	that	it	
receives
• The	scripting	capabilities	mean	that	you	can	use	calls	in	build	steps	to	
achieve	things	in	an	RPC	format	on	the	workers
• Python	can	call	the	build	masters	easily,	so	scripting	it	to	do	your	
bidding	is	free-form
• Mixing	this	with	file	opening,	web	calls	and	requests,	are	just	some	of	the	
advantages	of	using	Python	“glue”

Real-world	architectures	that	have	worked

• Company-wide	server	application	deployment
• Used	Applications	set	in	containers,	called	by	symlinked python	scripts	calling	
ports	to	start	program

• Company	used	Orchestration	to	scale	up	and	down	the	available	workers	as	a	
“resource	pool”	depending	on	server	loads

• License	server	for	a	“floating	license”
• Company	only	had	one	license,	and	software	had	no	ability	to	gate	phone	
home	data	or	queue

• Implemented	with	buildbot worker,	and	a	master	that	
queued/scheduled/gated	the	users.	



7/13/17

10

Buildbot
Worker

Buildbot
Worker

Company-wide	server	application	deployment

• Buildmaster
handles	queue,	
session	details
• Spin	up	new	
workers	for	larger	
pool
• Update	
applications	via	
Docker	repository	
on	Worker

/usr/bin	
mapped	change	

port	script

Buildbot
Master

Buildbot
WorkerUser

Change	
port

Request	
Application
Session

User	session	or	Login	Node Server	with	resource	&	full	privilege

Launch	Docker	App
Mount	Volume
Forward	X	Session	(Screen)	

Application	
Screen

Company-wide	server	application	deployment



7/13/17

11

Company-wide	server	application	deployment	(con’t)

Company-wide	server	application	deployment	(con’t)



7/13/17

12

Buildbot
Worker

Buildbot
Worker

License	Server	for	a	“floating	license”

• License(s)	can	be	
held	by	master	or	
the	attached	stock	
DB
• Either	use	
available	pool	to	
block	licenses,	or	
via	DB	or	logic
• Can	also	just	hold	
a	lock	on	the	
license	file	instead	
of	application	
screen

/usr/bin	
mapped	change	

port	script

Buildbot
Master

Buildbot
WorkerUser	A

Change	
port

Request	
Application
License

User	session	or	Login	Node Server	with	resource	&	full	privilege

Launch	Docker	App
Mount	Volume
Forward	X	Session	(Screen)	

Application	
Screen

DB	or	License	
Logic

User	B

License	Server	for	a	“floating	license”



7/13/17

13

Real-world	architectures	that	have	worked

• Compute	server	Linux	session	handler
• Company	used	Buildbot master/worker	with	workers	and	X11	forwarding	to	
hand	sessions	to	users;	queue	system	via	the	master’s	bone	stock	scheduler

• Home	Machine	Learning	server
• Used	successfully	to	create	a	“dashboard”	and	“compute	center”	for	my	home	
system,	which	pulls	in	aggregate	data	and	does	ML	on	large	datasets	with	
classifiers

Buildbot
Worker

Buildbot
Worker

Compute	server	Linux	Session	Handler	
(Tier	setup	w/	Multimaster)

/usr/bin	
mapped	

change	port	
script

Buildbot
Master

Buildbot
Worker

User	A
Change	
port Applications,	

other	setup	
details	and	
advanced	
tasks

User	session Server	with	resource	&	full	privilege

Launch	Xterm Session
Mount	Volume
Forward	X	Session	(Screen)	

Landed	
Session(s)

DB		Session	
Queue

User	B

Login	Node

Task	Buildbot
Master



7/13/17

14

Buildbot
Worker

Buildbot
Worker

Machine	Learning	Server

Buildbot
Master

Buildbot
Worker

Dashboard
Localhost:8080

Local	machine Server	with	resource	&	full	privilege

Clean	up	data,	close	task
Post	new	result	of	ML	on	
dashboard

DB		Session	
Queue

Buildmaster layer

Get	Data	from	
URLs	and	sources

Retrieved	data

Compute

Web	UI

Web	layer

Summary

• Through	a	little	bit	of	ingenuity	and	creative	use	of	components,	one	may	
fashion	many	of	the	infrastructure	design	patterns	that	appear	in	software	
and	IT
• Being	able	to	rapidly	design	proof-of-concepts	is	possible	with	this	method,	
and	can	reveal	design	considerations	before	making	a	proper	solution
• Remember	that	the	examples	shown	are	not	shown	with	any	security	or	
orchestration
• Keeping	an	open	mind	and	an	eye	on	upcoming	technology	can	widen	the	
available	infrastructure	patterns	one	can	design
• Experiment	with	new	tools	often	to	see	what	patterns	can	be	made	next



7/13/17

15

References

• http://buildbot.net
• https://github.com/buildbot
• Repo	for	examples	(To	be	posted	soon):	
• https://github.com/triskadecaepyon/infrastructure_patterns

Q&A?
https://github.com/triskadecaepyon
https://triskadecaepyon.github.io/


