7/13/17

Infrastructure Design Patterns with
Python, Buildbot, and Linux
Containers

David Liu
Python Technical Consultant Engineer
Intel Corporation

Overview

* Introduction

* Breaking out of ClI: Infrastructure Design patterns with Buildbot
framework pieces

* Hooking things up in weird ways: Ports, multi-masters, and pseudo-
RPC

* When things don’t fit: Linux Containers, and keeping things movable
* Pulling it all together with Python

 Real-world architectures that have worked

* Summary

7/13/17

Introduction: On Infrastructure

* What does it mean to have infrastructure?
* |s it automation? Is it orchestration? Is it task runners?

* Many options exist depending on what “needs” you have
* Full on orchestration with Chef, Puppet
* Dask, IPyParallel, Joblib (These are mostly numerical)

* Celery, Kafka

* Many of these examples are heavy-handed or square
peg/round hole problems

On Infrastructure (con’t)

* Examples
* Trying to get a distributed task system such as Dask to run a CRON
is not exactly the best use case
* Trying to get Celery to do a map-reduce operation

* Trying to get puppet to make a task graph

* In essence, every one of these frameworks are meant for
vastly different things!

7/13/17

Breaking out of Cl: Infrastructure Design
patterns with Buildbot

* Buildbot is normally meant for Continuous Integration (Cl), but you
can construct things out of the elements in weird ways.

* Just like Lego blocks for infrastructure; this differs heavily from things
such as Jenkins or TeamCity

* Cl Tasks normally encompass interesting pieces: A scheduler,
dependencies, a result

* However, these main task components are actually composed of
many other primitives that have been assembled together

Breaking out of Cl: Infrastructure Design
patterns with Buildbot (Con’t)

Examples:

* Resource pools * Change triggers

* Roles and triggers * Schedulers

* Task runners * Build steps (scripting steps)

* Distributed System + * Master/worker system
communications * Barriers and semaphores

* State Logic Dependency tree

7/13/17

Breaking out of Cl: Infrastructure Design
patterns with Buildbot (Con’t)

* Because Buildbot splits all these items up, one may be able to wire
the components up in unusual ways to meet commonly occurring
infrastructure patterns

* Warning: Before going any farther, | want to reiterate that what | am
about to show is conceptual and used for proof-of-concepts, and is no
replacement for sound orchestration and proper security

* This is considered a very “off use” of Buildbot (and was not intended
by the developers), so just be mindful of this

Breaking out of Cl: Infrastructure Design
patterns with Buildbot (Con’t)

* Infrastructure design patterns are the common tasks/roles, and
interconnects that occur in software deployments
* Using Buildbot is just one way of solving such examples
* One can utilize this to prototype something and then convert it to enterprise-
level deployments

* Examples:
* Cl->Package->Deployment (common use)
Enterprise application deployment
License Server
Linux Session launching/landing on Servers
Home Weather Server w/ Machine Learning tasks

Hooking things up in weird ways: Ports, multi-
masters, and pseudo-RPC

* Normally, most Cl systems do not expose such controls, but because
of the flexibility in Buildbot, one may use it quite freely

* The change-port allows for usage of a script or symlinked call to
trigger a task-which gives user-level triggers

* By passing in arguments of the script in, one can essentially “RPC” to
a worker with a known resource
* i.e. run some task where the right version of Python/NumPy is

* Buildbot is controlled via the logic of the master.cfg, which is
interpreted as majority Python code

Hooking things up in weird ways: Ports, multi-
masters, and pseudo-RPC (Con’t)

* In the buildmaster’s configuration, normal change sources look like
the following:
* c['change_source'] =[]
c['change_source'].append(changes.GitPoller(

'git://github.com/buildbot/pyflakes.git',
workdir="gitpoller-workdir', branch='master’,

pollinterval=300))
* However, you can add a secondary trigger source:

* c['change_source'].append(changes.PBChangeSource(port=9999,
user="myApp', passwd="AppPassword'))

7/13/17

Hooking things up in weird ways: Ports, multi-
masters, and pseudo-RPC (Con’t)

* Matched with the “fakechange.py”
script in buildbot-contrib, one can
initiate and pass arguments (such
as X11 info, user info) to a
buildmaster

* Utilizes the twisted.internet and
twisted.spread capabilities

* Sends change to the scheduler in
the Buildbot master.cfg

»def send_change(remote):
who = random.choice(users)
if len(sys.argv) > 1:
files = sys.argv[1:]
else:
files = [makeFilename()]
comments = commands.getoutput("fortune")
change = {'who': who, 'files': files,
'comments': comments,
'project': 'start-term'}
d = remote.callRemote('addChange’, change)
d.addCallback(done)
print("%s: %s" % (who, " ".join(files)))

f = pb.PBClientFactory()

»d = f.login(credentials.UsernamePassword("laura”, "fpga")
reactor.connectTCP(" localhost", 9999, f)l

»err = lambda f: (log.err(), reactor.stop())
d.addCallback(send_change).addErrback(err

reactor.run()

c['schedulers'].append(schedulers.SingleBranchScheduler(

name="external_e
change_filter=uti
treeStableTimer=None,
builderNames=["get_linux_session"]))

geFilter(project='start-term'),

Example of using the change-port to launch apps

Google Chrome

Killing networktestofficial buildbot_1 ... done
Killing networktestofficial_postgres 1 ... done

Removing netwo
Removing netwo AAKEiEEed
Removing netwo JEERCHEONESTItS

Removing netwo [nEgan bookmarks h import

O FRURIEITETS

bigboss@outerheaven:~/code/network_test_official$ docker-compose down

s Other bookmarks

Removing netwo
bigboss@outerh
bigboss@outerh
buildbotcfg d
buildbot_db d
bigboss@outerh
bigboss@outerh
emacs_submit.p
bigboss@outerh
total 20

Buildbot Buildbot

0 Build running currently
6 recent builds

run_docker_app

Welcome to buildbot

drwxrwxr
drwxrwxr
- FWXTWXT

fnished

finshed

-X
-X
-X

- TWXTWXT =X

Lrwxrwxrwx 1
-PWXTWXr-X 1

[
by
[
[
b
b

‘ finished B

‘ finished

Lrwxrwxrwx 1 b x
bigboss@outerh)| ished
zaphod: tests/

fnshed

bigboss@outerh
arthur: tests/
bigboss@outerh

7f9f538cd6ac

1THEBAYY B DD DE O

77780d21692f

13510e29177F

networktestofficial_worker_1

cdde39dazbad

buildbot/buildbot-worker:master "/usr/local/bin/du.

7 minutes ago Up 7 minutes

networktestofficial_docker_worker_1

3f25a51b1a0f

buildbot/buildbot-master:master "/usr/src/buildbot

7 minutes ago Up 7 minutes 0.0.0.0:8010->8010/td

p, 0.0.0.0:9989->9989/tcp, 0.0.0.0:9999->9999/tcp networktestofficial_buildbot_1

a88200ce6al7 postgres:9.4

" /docker-entrypotin. .. "

7 minutes ago Up 7 minutes 5432/tcp

networktestofficial_postgres_1

bigboss@outerheaven:~$ []

7/13/17

7/13/17

Hooking things up in weird ways: Ports, multi-
masters, and pseudo-RPC (Con’t)

* Multi-master gives the
ability to chain tasks and
resource pools together
to grant capabilities such
as load balancers to
certain tasks

MasterUI1

* Don’t hesitate to have
one task kick off another
subset of Buildbot -
N ERIES

Image from Buildbot Docs

Hooking things up in weird ways: Ports, multi-
masters, and pseudo-RPC (Con’t)

* Use util.BuildFactory() to send commands to workers via
ShellCommand

* Note that the worker must be privileged to run command and must
have resources, so define workers well

display _var = "DISPLAY=:0Q"

emacsapp_factory = util.BuildFactory()
emacsapp_factory.addStep(steps.ShellCommand(command=["docker", "run",

Weerm", "=v", "/:/files",

"—e", display_var,
Y—y","/tmp/.X11-unix:/tmp/.X11-unix",
"silex/emacs"]))

session = util.BuildFactory()

session.addStep(steps.ShellCommand(command=["docker" ,"run",

! "—v", "/tmp/.X11l-unix:/tmp/.X11-unix",
"—e", display_var, "jess/1995"]))

7/13/17

When things don’t fit: Linux Containers, and
keeping things movable

* What happens when things don’t want to fit together? or you have
security concepts to worry about?

* Use Linux Containers to provide additional design flexibility through
composition techniques (docker-compose, as an example)

» Use Containers to also cordon off the riskier bits (prevent volume
maps, etc.)

* Provide privilege/non-privileged barriers to separate users from full-
privileged resources

When things don’t fit: Linux Containers, and
keeping things movable (con’t)

* At some point, you may need orchestration to pull off tasks, so just
know what responsibilities you want in what technologies

* Depending on how you approach the problem, you might be able to
get away with little or no orchestration

* If all else fails, you can somewhat cheat by having the entire Buildbot
+ logic inside of a container, and use those as building blocks

Pulling it all together with Python

* So with Python at the forefront, you can utilize the Python scripts
injected into buildbot itself, or have the master.cfg unpack code that it
receives

* The scripting capabilities mean that you can use calls in build steps to
achieve things in an RPC format on the workers

* Python can call the build masters easily, so scripting it to do your
bidding is free-form
* Mixing this with file opening, web calls and requests, are just some of the
advantages of using Python “glue”

Real-world architectures that have worked

* Company-wide server application deployment
* Used Applications set in containers, called by symlinked python scripts calling
ports to start program
* Company used Orchestration to scale up and down the available workers as a
“resource pool” depending on server loads

* License server for a “floating license”
* Company only had one license, and software had no ability to gate phone
home data or queue
* Implemented with buildbot worker, and a master that
gueued/scheduled/gated the users.

7/13/17

Company-wide server application deployment

e Buildmaster

handles queue,

session details

* Spin up new
workers for larger

pool
* Update

User

applications via

Docker repository

on Worker

Application
Screen

User session or Login Node

Jusr/bin
mapped change
port script

Change
port

Server with resource & full privilege

Request
Application
Session

Launch Docker App
Mount Volume

Forward X Session (Screen)

Company-wide server application deployment

Terminal

3
&
5]
9
B
B
£
7
g
0

2017-06-260 03

1+0000 [-] Connecting to buildbot:9989
1:0000 [Broker,client] message from master:

:49:01+0000 [Broker,1,172.20.0.4] Got workerinfo from

1:0000 [-] bot attached
2017-06-20 03

2017-06-20 ©3:49:01+0000 [Broker,client] message from master:

bigboss@outerheavens: ~/cade/network_test_official
“CGracefully stopping... (press Ctrl+C again to force)
secondStopping networktestofficial worker_1 ... done
ACGracStopping networktestofficial_docker_worker_1 ... done
G E s e e e AT
i Stopping networktestofficial_postgres_1 ... don
KiTlinpigbossgouterheaven: ~/code/network_test: offmals docker-compose down
KillinRenoving networktestofficial worker_1 .
KillinRemoving networktestofficial_docker_worl er, . done
bigbosRenoving networktestofficial butldbot 1 .
REV’\OVIRemv‘"g networktestofficial_postgres_1 ...
R emoving network networktestofficial_default
MOV i ghoss@outerheaven:~/code/network_test_officials 1s
Removipyitldbotcfg db.env docker_files priv_slave README
Removibuildbot_db docker-compose.yml example_runs priv_slave_2
Remov bigboss@outerheaven:~/code/network_test_official$ cd buildbotcfg/
bigbos bigboss@outerheaven:~/code/network_ test nfhc!al/bu\ldbot:fgs 1s
uildbot.tac http.log.1 master.c mple twistd.pi
master.cfg state
/:nds/petwurk_test»nfﬁ(ial/bu'\ldbot:fgS rn -rf twistd.pid
/code/network_test_official/buildbotcfg$ cd
/code/network_test_officials s
mgbosbmdnnt<fg db.env docker_files priv_slave README
buildbot_db docker-compose.yml example_runs priy

blgbos < bigboss@outerheaven: ~/<nde/netwerk test nfﬁclals U

1:0000 [Broker,1,172.20.0.4] Worker secure-worker-1 attached

attached 3 -
secure-work : o0
f

attached

=@) e

:00 [kworker /1:2]

200
o0:

10 /ov(/goag\e/(hrome/duoﬁe ~-type
o [kuorker/

49 2 56108108 Hsrrar/ii
00 bash

% :
buildbot:9989; worker is pre/is o0 bash
cation-level keepalives e 225 el e

CONTAINER ID
bigboss@outerheaven:~$ []

bigboss@outerheaven:~$ docker ps
IMAGE

CCOMMAND CREATED

STATUS

:00 /home/bigboss/anaconda3/envs/ci_
22:5: 1 LH .Uﬂ /home/bigboss/anaconda3/envs/ct_
0 2; 3 ts/1 00:00:00 ps -ef
R A i L s (e S i,
632 1s d
e et G Sty
Found, did you nean:
m package 'x11-xserver-utils' (matn)
found
heavenccode/ntvork test offictats ahst +
e o e e
Bt e e e o)

-5 source activate ci_
Uterheaven:-5 cd code/network_test_offictal/priv_slave
offictal/priv_slave_2/
offictal/priv_slave_25 1
tuistd. log

uterheaven:~/code/network_test_of ficial/priv_slave 2
uterheaven:~/code/network_test_officlals bulldslave start priv

log until startup Finished
hable to
look for a

PORTS t startup.

islave stop priv_

7/13/17

7/13/17

Company-wide server application deployment (con’t

Ubuntu Desktop. DN ERDRIETTE S

2017-06-20 03:49:01+0000 [-] Connecting to buildbot:9989

2017-06-20 [Broker,client] message from master: attached oy e RLz::::/’: 2
2017-06-20 [Broker,1,172.20.0.4] Got workerinfo from 'secure-work : o Ckuorker/us:2]
2017-06-20 [-] bot attached 0 22:45 o [knorker/1:

2017-06-20 [Broker,1,172.20.0.4] Worker secure-worker-1 attached § 22 B el
H:

2017-06-20 : [Broker,client] message from master: attached

nda3/ent

d-worker-1 attached to!
201 nda3/en

second
ACGracit:9989; worker is reads
b el 201 ve stop priv_
KULUMevel keepatives Eve?i Buildbot Buildbot Buids ' Buid
Killin, o
Killinr.pb.BotFactory instang
Killin 201’ Builder Name Builds
bigbos buildbot_1 | 201
Removi Worker-1' attaching f|

Renovi. ttached

Removi byt 1dbor 1 (o
Removi fron 'secure-worker-1
Removibuildbot_1

bigbos Puildbot 1 2 Builder
bigboswnrker-l attached to r

buildb setached

buildb 01| B
bigbos t:9989; worker is read;

bigbos

emacs level keepalives every

Builds ‘Show old buiders.

Las

bigbosblevuve neaven.— cud

wabte to
bigboss@outerheaven:~$ dg «

CONTAINER ID IMAGE|
bigboss@outerheaven:~$

Islave stop priv_

Company-wide server application deployment (con’t

Google Chrome (B % o) 1moem &

2017-06-20 ©3:49:01+0000 [-] Connecting to buildbot:9989
2017-66-20 03:49:01+0000 [Broker,client] message from master: atplsb o o
| 2017-86-20 3:49:01+6000 [Broker,1,172.20.0.4] Got workerinfo froigbe e o0 vt READHE

® localhost «|em

= Other bookmarks
Buildbot Buide s 2 [o |

Buildrequests:

{1dbot
dstep.S
None
Builds:

Staned AL Duration Owner Staws
bigbosd Finishe
Removi buildbo

Reroviy= e’ [N amntes 2minaes

ReMOVipmand [2 minutes ago 2 minutes nished
Removie', 'jess:

e afewsecondsago afew seconds finished

Build Masters

Sched

bigboss@outerk| about
CONTAINER ID
bigboss@outerh
CONTAINER ID

Settings.

677d03a166e2
13510e29177f

cdde39dazbad
networktestotticial_docker_worker_1
3f25a51b1a0f buildbot/buildbot-master:master "/usr/src/buildbot...” 2 minutes ago Up 2 minutes 0.0.0.0:8010-
>8010/tcp, 0.0.0.0:9989->9989/tcp, 0.0.0.0:9999->9999/tcp networktestofficial buildbot_1
288200ce6al7 postgres:9.4 "/docker-entrypoin..." 2 minutes ago Up 2 minutes 5432/tcp
B networktestofficial_postgres_1
bigboss@outerheaven:~$ L

11

License Server for a “floating license”

* License(s) can be
held by master or
the attached stock
DB

Either use
available pool to
block licenses, or
via DB or logic

Can also just hold
a lock on the
license file instead
of application
screen

User session or Login Node

User A
User B

Jusr/bin
mapped change

. Change
port script

port

Application
Screen

Server with resource & full privilege

Request
Applicatio_

License

Launch Docker App
Mount Volume
Forward X Session (Screen)

License Server for a “floating license”

a =@ o) 1ieem

a
H

2017-06-20 03:49:01+0000 [-] Connecting to buildbot:9989
2017-06-20 03:49:01+0000 [Broker,client] message from master: aj:"‘“

3 Apps For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now.

Buildbot Builders / run_docker_ag

Finished a few seconds ago

s Other bookmarks i

Rebud

28 s fnished [suecess

285 docker run

thelels KR LT 11 1] =T

cdd039dazbad buildbot/buildbot-worker:master "/usr/local/bin/du..."
networktestoffici
3f25a51b1aef buildbot/buildbot-master:master "/usr/src/buildbot
>8010/tcp, 0.0.0.0:9989->9989/tcp, 0.0.0.0:9999-59999/tcp networktest _buildbot_1
a88200ce6al7? postgres:9.4 " /docker-entrypoil 2 minutes ago

networktestofficial_postgres_1

2 minutes ago
_docker_worker_1
2 minutes ago

bigboss@outerheaven:~$ [

Up 2 minutes
Up 2 minutes 0.0.0.0:8010-

Up 2 minutes 5432/tcp

7/13/17

12

7/13/17

Real-world architectures that have worked

* Compute server Linux session handler

* Company used Buildbot master/worker with workers and X11 forwarding to
hand sessions to users; queue system via the master’s bone stock scheduler

* Home Machine Learning server

* Used successfully to create a “dashboard” and “compute center” for my home

system, which pulls in aggregate data and does ML on large datasets with
classifiers

Compute server Linux Session Handler
(Tier setup w/ Multimaster)

User session Login Node Server with resource & full privilege

Jusr/bin

mapped

change port Change

script port Applications,
other setup
details and
advanced

tasks

La n d Ed Launch Xterm Session
Mount Volume

Session (S) Forward X Session (Screen)

13

7/13/17

Machine Learning Server

Local machine Web layer Buildmaster layer Server with resource & full privilege

Retrieved data
Localhost:8080

Clean up data, close task
Post new result of ML on
dashboard

Summary

* Through a little bit of ingenuity and creative use of components, one may

fashion many of the infrastructure design patterns that appear in software
and IT

* Being able to rapidly design proof-of-concepts is possible with this method,
and can reveal design considerations before making a proper solution

* Remember that the examples shown are not shown with any security or
orchestration

* Keeping an open mind and an eye on upcoming technology can widen the
available infrastructure patterns one can design

* Experiment with new tools often to see what patterns can be made next

14

7/13/17

References

* Repo for examples (To be posted soon):
* https://github.com/triskadecaepyon/infrastructure_patterns

Q&A?

https://github.com/triskadecaepyon
https://triskadecaepyon.github.io/

