7/312016 . revea I-md

HOW TO MIGRATE FROM POSTGRESQL TO HDF5
AND LIVE HAPPILY EVER AFTER

Michele Simionato @ GEM Foundation

legacy code warrior

The story of a successful software rewriting

http://localhost:1948/talk.md#/1 1/28


http://micheles.github.io/author/
https://www.globalquakemodel.org/

7/31/2016

http://localhost:1948/talk.md#/1

reveal-md



7/31/2016 reveal-md

WHERE I COME FROM

e Ph. D. in Theoretical Physics (yep, I understand gravitational waves)

e contributed to Python with article/docs, author of the decorator module

» worked a couple of years as consultant (Zope/Plone + other stuff)

» worked 7 years in a Finance firm (mostly database and web
programming)

e arrived at GEM in October 2012

 in charge of the earthquake simulation engine from September 2014

http://localhost:1948/talk.md#/1 3/28



7/31/2016 reveal-md

» I spent 15 years doing Physics and 14 years programming

e I am still more interested in solving the scientific problems than the
technological problems

* lots of experience with programming in the large

know all about code maintenance, dependencies management, product

documentation, automatic tests, continuous integration, code reviews, ...

SQL lover and generally old school boy

still using Emacs in the 21th century

I don't throw away old code just because it is old

http://localhost:1948/talk.md#/1 4/28



7/31/2016 reveal-md

WHAT I AM GOING TO TALK ABOUT

e "big" numerical simulations for earthquakes

lots of floating point outputs with geospatial data
why storing them in Postgres/PostGIS did not work
what to do when you have a huge architectural
problem

technical and political issues faced

how the migration PostGIS -> HDF5 was done

e lessons learned

http://localhost:1948/talk.md#/1 5/28



7/31/2016 reveal-md

NUMBER CHRUNCHING WITH A RELATIONAL
DATABASE??

e yep, seriosly
» after a few weeks on the new job I had already realized that the
architecture was completely wrong

» everything was structured like a Django application without being a web
application

e there was an insane mix of Django objects and arrays
» large numpy arrays were stored in the database as pickled objects

http://localhost:1948/talk.md#/1 6/28



7/31/2016 reveal-md

» there were absurd things like doing the aggregation on the database with
locks

e there were hundreds of workers writing concurrently on the same table

» the database logic was hopelessly coupled with the scientific logic

e strangely enough, the architecture was totally wrong but the code base
pretty good

Then rewrite everything?

http://localhost:1948/talk.md#/1 7/28



7/31/2016 reveal-md

THE FIRST LAW OF SOFTWARE REWRITING

Rewriting a project takes always longer than writing it in the first place

(as we seasoned developers know)

http://localhost:1948/talk.md#/1 8/28



7/31/2016 reveal-md

I did not want to embark myself in such an adventure

but sometimes there is no choice :-(

http://localhost:1948/talk.md#/1 9/28



7/31/2016

reveal-md

40000

Hazard Event Based Calculation for Germany, 1000 SES x 1 year

Cumulative seconds

35000

30000 -

25000 ~

20000

15000 -

10000

5000

T T I
engine-1.5 N
engine-2.0 I

save gmfs compute ruptures compute gmfs save ruptures

http://localhost:1948/talk.md#/1



7/31/2016 reveal-md

WHAT FIVE ORDERS OF MAGNITUDE MEAN

e 1day-> less than 1 second
e 1year -> 5 minutes

I measured a speedup exceeding 200,000x

(+ memory gain of 1-2 orders of magnitude)

http://localhost:1948/talk.md#/1 11/28



7/31/2016 reveal-md

BLOCKED BY POLITICAL ISSUES

» the architecture of the application had been just rewritten (more than an
year of effort, it was ported from Redis to PostgreSQL)

e a younger collegue of mine had already written a criticizing mail went in
the wrong hands

» the official release of version 1.0 had to be ready in six months

e there was a team friction between Zurich and Pavia

e there was an artificial division between hazard code and risk code
making it impossible to fix the risk code

http://localhost:1948/talk.md#/1 12/28



7/31/2016 reveal-md

DOING NOTHING FOR 8 MONTHS

» sometimes doing nothing is the best choice

study the codebase, maintain the old code

let the frustration grow

(a good thing, if imited in time)

o getting new case studies and adding new tests

e improve where you can (monitoring, XML parsing, concurrency, ...)

http://localhost:1948/talk.md#/1 13/28



7/31/2016 reveal-md

WAITING PAYS OFF

the Zurich team evaporated

we took change of both hazard and risk in Pavia

we started removing old cruft (10,000+ lines of code)

we decided on a conservative strategy: keep Postgres, rewrite the
relational schema and the slow queries

http://localhost:1948/talk.md#/1 14/28



7/31/2016 reveal-md

13 MORE MONTHS FIGHTING POSTGRESQL

e implemented a migration mechanism

e changed most of the tables

e changed the critical queries several times

e improvements by several orders of magnitude

e still, it was not enough, as realized in the summer of 2014
e but we kept the users and scientists happy

http://localhost:1948/talk.md#/1 15/28



7/31/2016 reveal-md

THE DECISION TO DROP POSTGRESQL

 started the oq-lite project with the excuse of the Windows porting,
September 2014

ported the simplest calculators to the new architecture

» removed gradually the geospatial queries

e kept in parallel both versions, with the same functional tests

e removed a lot of annoying unittests

e built expertise with HDF5

http://localhost:1948/talk.md#/1 16/28



7/31/2016 reveal-md

OTHER ARCHITECTURAL CHANGES

e all the concurrency is managed by a pure map-reduce

» made the concurrency layer independent from the low level
parallelization technology

e changed from everybody read/write on the database to only the
controller node can read/write

e all scientific data are now in the datastore (one .hdf5 file per calculation)

e all the metadata (i.e. start/stop time of the calculation, description, logs,
performance information, output information) are in SQLite

http://localhost:1948/talk.md#/1 17/28



7/31/2016 reveal-md

e the workers do not write anything on the filesystem and they do not
communicate at all with the master, except via the map-reduce (shared
nothing)

 totally decoupled the database from the calculation logic

e added a DbServer in Python serializing the access to the database
(needed for the WebUI)

» removed the ORM layer (thanks to Martin Blais dbapiext)

http://localhost:1948/talk.md#/1 18/28



7/31/2016 reveal-md

EVEN MORE CHANGES

e removed completely the need for XMLSchema, doing the validation
entirely at the Python level

e implemented a generic serializer Python <-> XML instead of dozens of
different serializers, one per class

e added CSV exports with the final goals of removing XML exports

e implemented a serialization protocol Python <-> hdf5 with methods
__toh5 and fromh5

» supported both single user mode and multiple user mode

» ported the engine to Windows and Mac OS X

» modernized the code to Python 3

http://localhost:1948/talk.md#/1 19/28



7/312016 . revea I-md

ALL WENT SURPRISINGLY WELL!?

http://localhost:1948/talk.md#/1 20/28



7/31/2016 reveal-md

THINGS THAT I ALREADY KNEW, REINFORCED

e monitoring the running system for speed and memory allocation is
essential

e if testing is difficult, the architecture is bad

» unittests are bad, functional tests are good

» if you want performance, replace Python objects and dictionaries with
numpy.arrays

 no ORM please

http://localhost:1948/talk.md#/1 21/28



7/31/2016 reveal-md

MY TECHNICAL ADVICE

» follow a principle of simplicity/cleanness: 95 % of the speedups and
memory saving came for free after removing code

e invest your time in solving the real problem, not in complicating your
technological stack (so I did not spend time on numbas, GPUs, Intel
compiler, etc etc)

e always challenge the underlying assumptions

e take the most difficult problem that you can solve and solve it first

e most of all, be patient

http://localhost:1948/talk.md#/1 22/28



7/31/2016 reveal-md

POLITICAL ADVICE

e don't be confrontational with your boss

e it is his job to be conservative

» take the slow way and make sure that at every little step you have a
measureable improvement to show off

» performance is a good excuse for change

e you can raise your voice once or two in four years

e it takes time to build trust

http://localhost:1948/talk.md#/1 23/28



7/31/2016 reveal-md

THINGS I DISCOVERED ALONG

using a database + ORM requires a LOT more memory than you think
e it is sometimes best to use all of the available memory

sometimes it is better to run out of memory early

the data transfer is really important

a story about parsing XML: Ixml -> ElementTree -> expat

the migration to Python 3 had several surprises

http://localhost:1948/talk.md#/1 24/28



7/31/2016 reveal-md

LESSONS ABOUT TECHNOLOGIES

e concurrent.futures is just fine

e Travis is good

» wheels are great

e h5py is ultra-fast but can bite you

http://localhost:1948/talk.md#/1 25/28



7/31/2016 reveal-md

REGRETS

e nearly two years "lost" (from October 2012 to August 2014)
» I was too conservative and I should have cut more stuff/tests
e I should have investigated better what features were really important

(but removing 50,000+ lines of code feels really great!)

http://localhost:1948/talk.md#/1 26/28



7/31/2016

http://localhost:1948/talk.md#/1

reveal-md



7/312016 . revea I-md

THE END: SECOND LAW OF SOFTWARE REWRITING

Software rewriting takes always longer than you think
But sometimes it is worth it :-)

https://github.com/gem/oq-engine

http://localhost:1948/talk.md#/1 28/28


https://github.com/gem/oq-engine

