

How is python used in biomolecular sciences?

L. Hedges

C. Woods

Europython 2018 — Edinburgh

25/07/2018

What is computational biosomething?

X-ray structure of a protein: set of x,y,z spatial coordinates of atoms

Typical questions tackled with MD

How well do small molecules inhibit a protein's functionality?

many potential compounds

How do proteins fold?

How do proteins interact with each other?

Timescales in biology

Other experimental techniques: e.g. cryo EM

Generate timeseries to compare to experiments

200 ns of protein dynamics

time trace of an angle

What is MD?

Physics engine usually written in C++, to integrate Newtons equation of motion using leap frog type algorithms.

Typical MD workflow

coordinates	.pdb	.crd	.gro	.XYZ	.mol2
trajectories	.dcd	.xtc	.trr		
forcefields	.psf	.parm7	.itp		

And of course all MD programs can read all these file formats? — No

I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this?

visualise coordinates

convert to pdb format

use a setup tool

run simulation

I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this? ppxasjsm::azuma { ~/Documents/}-> vmd dAla.gro

run simulation

use a setup tool

or, use one of the many other tools...

visualise coordinates

convert to pdb format

I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this?


```
In [8]: u = md.Universe('dAla.gro')
coors = u.select_atoms('all')
coors.write('md_analysis.pdb')
```

or

I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this?

taken from AMBER tutorial

pretty much all the arrows are bash scripts with input files

I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this?

visualise coordinates

convert to pdb format

use a setup tool

run simulation

```
ppxasjsm::azuma { ~/Documents/}-> FESetup setup.in
[globals]
forcefield = amber, ff99SBildn, tip3p
[protein]
basedir = protein
file.name = protein.pdb
molecules = ala
box.type = rectangular
box.length = 10.0
align axes = True
neutralize = yes
min.nsteps = 1000
min.restr force = 10.0
min.restraint = notsolvent
md.heat.nsteps = 1000
md.heat.restr force = 10.0
md.heat.restraint = notsolvent
md.constT.nsteps = 1000
md.constT.restr force = 10.0
md.constT.restraint = notsolvent
md.press.T = 298.0
md.press.nsteps = 50000
md.press.p = 1.0
```


I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this?

visualis	General System	Integrator	######################################
Simulation			<pre># this script was generated by openmm-builder. to customize it further, # you can save the file to disk and edit it with your favorite editor.</pre>
	Input coordinates	input.pdb	######################################
convert	mpar coordinatoo	mpanpap	π
CONVEN	Input topology	input.prmtop	<pre>fromfuture import print_function from simtk.openmm import app</pre>
	Forcefield	AMBER99sb-ildn	<pre>import simtk.openmm as mm from simtk import unit</pre>
USE a Se	Water Model	TIP3P	from sys import stdout
	Platform	CUDA	<pre>pdb = app.PDBFile('input.pdb') forcefield = app ForceField('amber99shildn xml' 'tip3p xml')</pre>
			Torcertetu = upp.rorcertetu (unber 555bituri.xmt , tipsp.xmt)
run sim	Precision	mixed	<pre>system = forcefield.createSystem(pdb.topology, nonbondedMethod=app.PME, nonbondedCutoff=1.0*unit.nanometers, constraints=app.HBonds,</pre>
	Device index		rigidWater=True, ewaldErrorTolerance=0.0005)
	OpenCL platform indx		<pre>integrator = mm.LangevinIntegrator(300*unit.kelvin, 1.0/unit.picoseconds,</pre>

I have a coordinate .gro (Gromacs) file I want to simulate with Amber, how do I do this?

visualise coordinates

convert to pdb format

And another command line tool...

use a setup tool

run simulation

pmemd -0 -i ala.in -p ala.parm7
-c ala.rst7 -o myout.mdout -x
myout.nc -e myout.mdene -r
myout.rst7

Zoo of applications leads to hacky workflows

- Most tools have organically grown from academic software with poor software practices
- In order for tools to work with each other in complicated workflows a lot of hacky bash scripting is used by academic users
- Users need to be experts in many different software with command line interfaces to interlink them
- Many tools can do similar things and there may not be obvious solutions for one problem (google trap: try suggestions until one works)
- -> Loss of focus on the science

The same example as before BioSimSpace

In []: import BioSimSpace as BSS

Reading in the gro file as before

[n []:	system =	BSS.IO.readMolecules('input/dAla.gro')
------	----	----------	-----------------------	------------------	---

Simply view the molecule in the notebook rather than using external tool

In []: BSS.viewMolecules('input/dAla.gro')

Selecting the first and only molecule to parametrise it and then solvating it

```
In [ ]: molecule = system.getMolecules()[0]
```

In []: molecule = BSS.Parameters.parameterise(molecule, 'ff99SB').getMolecule()

 Cloud server demo — using BioSimSpace

docker run chryswoods/biosimspace

http://130.61.69.221/hub/tmplogin

http://130.61.69.221/

BioSimSpace phase I

API overview

Core: Sire — Molecular library in C++

What is BioSimSpace — summary

Conclusions

- Python API to write workflow components for Biomolecular simulations
- Allows to focus on science and not software: No need to become an expert at different MD packages, setup or analysis tools
- Ease of use in the cloud, with scalable computing resources and future academic fool proof pricing model
- Planned support for Knime and CWL workflow managers

- A workflow engine
- A top down approach by trying to reinvent the wheel again
- A 'finished' piece of software: It is very much in an alpha development stage with a large list of features and capabilities to be added in the future

Questions

