
Hacking
Reinforcement Learning

Guillem Duran Ballester

Guillemdb

@Miau_DB

A tale about hacking AI-Corp

Hacking RL
1. Information gathering
2. Scanning
3. Exploitation & privilege escalation
4. Maintaining access & covering tracks

What is RL?
, end, info

Our Hobby:
 Developing FractalAI

Guillem Duran
@Miau_DB

Sergio Hernández
@EntropyFarmer

"Study hard what interests you the most in the most
undisciplined, irreverent and original manner
possible.” R. P. Feynman

Causal entropic forces

- Paper by Alex. Wissner-Gross (2013)
- Intelligence is a thermodynamic process
- No neural networks → Equations

Intelligent decision

Direction of maximum

Number of future
possible outcomes

Given your current state

Map them to a score

Until you reach the
time horizon

Count all the paths that exist

Cone: Space of future
possible outcomes

Sample random
walks

Move away from the wall so fewer
walks get 0 score

Present

Zero score

Nobody likes entropic forces

- All rewards equal 1 - NP hard!

Paper Released

FractalAI

● Finds low probability points and paths
● Constrained resources
● Total control of exploration process
● Linear time

FractalAI

A set of rules for:
1. Defining a cloud of points (Swarm)
2. Moving a Swarm in any Cone
3. Measuring and comparing Swarms
4. Analyzing the history of a Swarm

Hacking RL
1. Information gathering
2. Finding vulnerabilities & Scanning
3. Exploitation & privilege escalation
4. Covering tracks & Maintaining access

RL
, end, info

Finding an attack vector

Swarms are cool
- They move in linear time.
- Pixels/RAM + Reward.
- They guess density distributions
- They follow useful paths

"The best way to get the right answer on
the Internet is not to ask a question; it's
to post the wrong answer."

Cunningham's Law

FractalAI
SW FMC

Using a Swarm to generate data
● Swarm Wave (SW)

- Move a Swarm → Sample state space
- Cone → Tree of visited states
- Efficient → Only one tree

Using a Swarm to generate data

● Fractal Monte Carlo (FMC)
- 1 Cone per action
- Robust → Stochastic/difficult envs
- Distribution of action utility

● Swarm Wave (SW)
- Move a Swarm → Sample state space
- Cone → Tree of visited states
- Efficient → Only one tree

Hardcore Lunar Lander

FIRE

HP Fuel

Hook

Rubber
band

2 Continuous
DoF

The Gameplay

Bring rock here

Reward
- Health + Fuel level
- Closer to target → +0.2
- Reach target → +100

Catch rock outside
this circle

Don’t crash!

FMC Cone
- Grey lines:

 Rocket Paths

- Colored lines:
 Hook’s Path

- Colored change:
New target

(Pick up/drop rock)

Rock attached

Drop Rock
Catch Rock

Hacking RL
1. Information gathering
2. Scanning
3. Exploitation & privilege escalation
4. Maintaining access & covering tracks

Demo time!

Hacking RL
1. Information gathering
2. Scanning
3. Exploitation & privilege escalation
4. Maintaining access & managing tracks

Performance of the Swarm Wave

Robust to sparse rewards

Solving Atari games is easy

SW is useful in virtually all environments

Fractal Monte Carlo

Control swarms of agents

Multi objective environments

Hacking OpenAI Baselines
Run_atary.py → inject hacked env.

A2c.py → recover action

Guillem Duran Ballester

- SW & FMC are simple

- I learn stuff super fast

- Save tons of money!

- I like teaching & sharing

Let’s coauthor papers or hire me!

- RL Researcher Wannabe

- Telecomm. Engineer

- PyData Mallorca co organizer

- My hobby: hacking AI stuff

Guillemdb

Thank You!

Please Hack us:

@Miau_DB

@Entropyfarmer

1. Talk repo: Guillemdb/hacking-rl
2. Code: FragileTheory/FractalAI
3. More than 100 videos
4. PDFs on arXiv.org

https://twitter.com/Miau_DB
https://twitter.com/Miau_DB
https://twitter.com/EntropyFarmer
https://github.com/Guillemdb/hacking-rl
https://www.youtube.com/user/finaysergio/videos

Additional Material
● How the algorithm works
● An overview of the FractalAI repository
● Reinforcement Learning as a supervised problem
● Hacking OpenAI baselines
● Papers that need some love
● Improving AlphaZero
● Combining FractalAI with neural networks

The Algorithm

1. Random perturbation of the walkers
2. Calculate the virtual reward of each walker

a. Distance to 1 random walker
b. Reward of current state

3. Clone the walkers → Balance the Swarm

Random perturbation

Walkers & Reward density

Cloning Process

Cloning balances both densities

Choose the action that most walkers share

RL is training a DNN model

● ML without labels → Environment
● Sample the environment
● Dataset of games → Map states to scores
● Predict good actions

Which Envs are compromised?

● Atari games → Solved 32 Games!

● dm_control → x1000+ with tricks

● Sega games → Good performance

● I hope soon in DoTA 2 & challenging environments

If you run it on your laptop in 50 games

- Pwns planning SoTA

- 17+ games with max scores (1M Bug)

- Cheaper than a human (No Pitfall)

- Beats human record → 56.36% games

RL as a supervised task
● Train autoencoder with a SW
● Generate 1M Games and overfit on them
● Use a GAN to mimic a fractal
● Use FMC to calculate Q-vals/Advantages
● Trained model as a prior

Give love to papers!
● Reproducing world models
● Playing Atari from demonstrations (OpenAI)
● Playing Atari from YouTube Videos (Deepmind)
● RUDDER

https://ctallec.github.io/world-models/
https://blog.openai.com/learning-montezumas-revenge-from-a-single-demonstration/
https://arxiv.org/abs/1805.11592v1
https://github.com/ml-jku/baselines-rudder

Efficiency on MsPacman
SW vs. UCT & p-IW (Assuming 2 x M4.16xlarge)

UCT 150k p-IW 150k p-IW 0.5s p-IW 32s

Score x1.25 x0.91 x1.85 x1.21

Sampling
Efficiency

x1260 x1260 x1848 x29581

When UCT(AlphaZero) finishes ⅔ of its first step,
SW has already beaten by 25% its final score

An example run:

- 128 walkers
- 14.20 samples / action
- Scored 27971 points
- Game len 6892
- 97894 samples
- 1min 38s. Runtime
- 70.34 fps

Improving Alphazero
● Change UTC for SW → sample x1000 + faster
● Stones as reward → SW jumps local optima
● Embedding of conv. layers for distance
● Use FMC to get better Q-values
● Heuristics only valid in Go

SW: Presenting an unfair benchmark
● A fair benchmark requires sampling 1M score at

150k samples / step

- 10 min play: 12000 steps - One step: 400 µs
- 1 core game: 4.8s x 150k x 50 rounds -> 416 days
- Ideal M4.16xlarge: $3.20 / Hour →

 500$ per game running 1 instance for 6.5 days
- 26,500$ on 53 games → Sponsors are welcome

Counting Paths vs. Trees

● Samples / step: confusing → Tree of games

Traditional Planning Swarm Wave

