Guillem Duran Ballester

o
=
0]
3

Q
o

“"The Env" "Algorithms"
API API

3G

“"The Env" "Algorithms"
API API

ol

s w o=

Hacking RL

Information gathering

Scanning

Exploitation & privilege escalation
Maintaining access & covering tracks

Reward, end, info

IELG

action

parameter 6

Observe state

| Environment

“Study hard what interests you the most in the most
undisciplined, irreverent and original manner
possible.” R. P. Feynman

Sergio Hernandez Guillem Duran
@EntropyFarmer @Miau_DB

- Paper by Alex. Wissner-Gross (2013)
- Intelligence is a thermodynamic process
- No neural networks — Equations

F(Xy, 7)=T.VxS.(X, 7)lx;

Count all the paths that exist

(x(1)|x(0)) In Pr (x(1)[x(0))Dx(7)

Map them to a score

Until you reach the
time horizon

SC(X,é = _kB

Cone: Space of future Sample random
possible outcomes walks

|

ero score

x(0)

Present \ove away from the wall so fewer

walks get O score

ROROEARIITY,

8 8 @ 8 §

®

- All rewards equal 1

NP hard!

Finds low probability points and paths
Constrained resources

Total control of exploration process
Linear time

Fractalfl

A set of rules for:

1.

Defining a cloud of points (Swarm)

2. Moving a Swarm in any Cone
3.
4. Analyzing the history of a Swarm

Measuring and comparing Swarms

B b =

Hacking RL

Information gathering

Finding vulnerabilities & Scanning
Exploitation & privilege escalation
Covering tracks & Maintaining access

Reward, end, info

IELG

action

Observe state

| Environment

OpenAl

.get_state()

> G

OpenAl

They move in linear time.
Pixels/RAM + Reward.

They guess density distributions
They follow useful paths

1
Tme hoazon (seconds)

Numbet of futises

Framas pet second (FFS)

| TRALK

| FLAYER

| FLAYER'S FRACTAL
GOALS

Speadrg

Strength =~
Enesgy

Stiength

Health

Strength

| MOVE FLAYER
| SELECT /ADD PLAYER

START/STOP

Cortinuosly
Run =
v Dont movel

Powerful Al

Impossible Algorithms

Powerful but
unprovable
? algorithms

"The best way to get the right answer on ? FractalAl
the Internet is not to ask a question; it's Upper bound on W EVIEE e

performance of
provable algorithms

to post the wrong answer.” Weak

provable
algorithms

Weak Al

Simplle Complex
Algorithms Algorithms

Figure 5.1.: Theorem 5.3.3 rules out simple but powerful artificial intelligence
algorithms, as indicated by the greyed out region in the upper
left. Theorem 5.6.1 upper bounds how powerful an algorithm can
be before it can no longer be proven to be a powerful algorithm.
This is indicated by the horizontal line separating the region of
provable algorithms from the region of Godel incompleteness.

Using a Swarm to generate data

e Swarm Wave (SW)
- Move a Swarm — Sample state space

- Cone — Tree of visited states
- Efficient — Only one tree

Using a Swarm to generate data

e Swarm Wave (SW)
- Move a Swarm — Sample state space

- Cone — Tree of visited states
- Efficient — Only one tree

e Fractal Monte Carlo (FMC)
- 1 Cone per action

- Robust — Stochastic/difficult envs
- Distribution of action utility

HP Fuel

Rubber
band

2 Continuous
DoF

FIRE Hook

Reward

- Health + Fuel level
- Closer to target — +0.2
- Reach target — +100

Catch rock outside

this circle _
Bring rock here

Don’t crash!

- Grey lines:
Rocket Paths

- Colored lines:
Hook’s Path

- Colored change:
New target
(Pick up/drop rock)

Params V12,3): 30s 500f 100e 10i 200spr 1soft 2w
Time: 5415
Deads: %(041)
Risk:

= L

Hacking RL

Information gathering

Scanning
Exploitation & privilege escalation
Maintaining access & covering tracks

0N

Hacking RL

Information gathering

Scanning

Exploitation & privilege escalation
Maintaining access & managing tracks

Performance of the Swarm Wave

-COe:

S

Solving Atari games IS easy

CEEET I." e J'

== r..|-'-|

. byb

Ly

999980 987508 9@ 9999930

B T ;

TIME 0:15 - A K
RINGS 7 e

-.t_& 4

Dead ratio:
Risk level:

Run_atary.py — inject hacked env.

from baselines.common.cmd_util import atari_arg_parser#, make atari _env
from fractalai.datasets.baselines import make_atari_env

import ray

ray.init()

A2c.py — recover action

obs, rewards, dones, infos = self.env.step(actions)
actions = [inf["action"] for inf in infos]
mb_actions.append(actions)

“"The Env" “"Algorithms"
API API

AICORP

- 1M Games
- model.fit()
- 72?27?27

- Profit

Hacks Hacks

ooizem

@ Guillemdb

PyData Mallorca co organizer

Telecomm. Engineer
My hobby: hacking Al stuff

RL Researcher Wannabe

Let’s coauthor papers or hire me!

Save tons of money!

SW & FMC are simple

| learn stuff super fast

| like teaching & sharing

s w h =

Talk repo: Guillemdb/hacking-rl y @Miau DB
Code: FragileTheory/FractalAl
y @Entropyfarmer

More than 100 videos

PDFs on arXiv.org

https://twitter.com/Miau_DB
https://twitter.com/Miau_DB
https://twitter.com/EntropyFarmer
https://github.com/Guillemdb/hacking-rl
https://www.youtube.com/user/finaysergio/videos

How the algorithm works

An overview of the FractalAl repository
Reinforcement Learning as a supervised problem
Hacking OpenAl baselines

Papers that need some love

Improving AlphaZero

Combining FractalAl with neural networks

The Algorithm

1. Random perturbation of the walkers

2. Calculate the virtual reward of each walker
a. Distance to 1 random walker
b. Reward of current state

3. Clone the walkers — Balance the Swarm

State space Eg

Causal slice X (x,, t=5"dt) =
Set of all feasible system futures.

Initial action

Initial action
was "B System's initial state x,

Walker density 1 Reward level

=

P

High | i Hig

Walkers jump to better
positions by cloning
other walker's states.

Cloning makes density
and reward levels to
match, lowering their
divergence.

State space Eg

Action “A”
WA =1/6

Action “B”
Wy = 5/6 System’s initial state x,

RL IS training a DNN model

ML without labels — Environment
sSample the environment

Dataset of games — Map states to scores
Predict good actions

Which Envs are compromiseds

e Atari games — Solved 32 Games!
e Sega games — Good performance
e dm_control — x1000+ with tricks

e | hope soon in DoTA 2 & challenging environments

If you run it on your iaptop in 90 games

Pwns planning SoTA
Cheaper than a human (No Pitfall)
17+ games with max scores (1M Bug)

Beats human record — 56.36% games

RL as a supervised task

Train autoencoder with a SW

Generate 1M Games and overfit on them
Use a GAN to mimic a fractal

Use FMC to calculate Q-vals/Advantages
Trained model as a prior

Give love to papers!

Reproducing world models

Playing Atari from demonstrations (OpenAl)

Playing Atari from YouTube Videos (Deepmind)

RUDDER

https://ctallec.github.io/world-models/
https://blog.openai.com/learning-montezumas-revenge-from-a-single-demonstration/
https://arxiv.org/abs/1805.11592v1
https://github.com/ml-jku/baselines-rudder

Efficiency on MsPacman

An example run:

- 128 walkers

- 14.20 samples / action
- Scored 27971 points

- Game len 6892

- 97894 samples

- 1min 38s. Runtime

- 70.34 fps

When UCT(AlphaZero) finishes % of its first step,

SWvs. UCT & p-IW (Assuming 2 x M4.16xlarge)

UCT 150k | p-IW 150k | p-IW 0.5s p-IW 32s
Score x1.25 x0.91 x1.85 x1.21
Sampling | x1260 x1260 x1848 x29581
Efficiency

SW has already beaten by 25% its final score

Change UTC for SW — sample x1000 + faster
Stones as reward — SW jumps local optima
Embedding of conv. layers for distance

Use FMC to get better Q-values

Heuristics only valid in Go

SW-: Presenting an unfair henchmark

e A fair benchmark requires sampling 1M score at
150k samples / step

- 10 min play: 12000 steps - One step: 400 us
- 1 core game: 4.8s x 150k x 50 rounds -> 416 days
- |deal M4.16xlarge: $3.20 / Hour —

500% per game running 1 instance for 6.5 days
- 26,500% on 53 games — Sponsors are welcome

Gounting Paths vs. Trees

e Samples / step: confusing — Tree of games

Traditional Planning Swarm Wave

S

