FASTER END-TO-END TESTS WITH FIXTURE
FACTORIES

Stephan Jaensch
J @s_jaensch

|

n (L
[N
PBE

I
®
\!“}“

DI_IIZIIZI
IIH:IIZIIZI
D = = =

=
&
=

|

analie = Q RN EEEN “
A58 C__J[- di %ﬁ =

OE T [EOjEEEEgEl |CeolT T

EPEEOIEEEREE
=
=
=

YELP'S MISSION

To connect people to great local businesses

WHAT I'LL TALK ABOUT

What are end-to-end tests?

The problem with setting up end-to-end tests

How do fixture (or data) factories help solve the problem?
How can we make tests faster?

END-TO-END TESTS - THE WHAT AND WHY

E2E Tests

(Ul Testing)

/ ntegration Tests\
/ Unit Tests \

OUR SERVICE TECHNOLOGY STACK

IIIIIIIIII

WHAT'S HARD ABOUT E2E TESTS?

Microservice

A

Microservice

,) Microservice
Microservice

Microservice Microservice

Microservice

Source: https://www.slideshare.net/danveloper/microservices-the-right-way

 (H00E
(000

L
.

A\

mny
1l

101
) | @)

CREATING E2E TEST STATE

"business” (id, "name’ , "addressl’
"business alias (id, alias., business
"business_payment_account_entity (1id
"biz_user_business (id, biz_user_id

"business” (id°, "name . "addressl’
"business alias (id, alias., business
"biz_user business’ (id, biz user id

Lots of SQL statements...

TAKING INSPIRATION FROM DJANGO

from myapp.models import Animal

class AnimalTestCase(TestCase):
def setUp(self):
Animal.objects.create(name="1lion", sound="roar")
Animal.objects.create(name="cat", sound="meow")

...but for downstream services as well

...and without code duplication

TESTING FACTORY LIBRARIES

e python packages-biz claims models
e python packages-ee metrics models

Contain SQLAIchemy models as well as factory functions
Factories provide a slightly higher level of abstraction
Take care of common default values

Make sure data is logically correct

TEST - BEFORE

def test get answer list empty list(testapp):
response = testapp.get(
'/business/{business id}/question/'
'{question id}/answer/v1l'.format (
business id=encrypt id(3),
question id=encrypt id(2),

) 1
params={
'limit': LIMIT,
'offset': OFFSET,
b
)

assert response.json == {..}

TEST - AFTER

def test get answer list empty list(testapp, question, business id):
response = testapp.get(
'/business/{business id}/question/'
'{question id}/answer/v1l'.format (
business id=encrypt id(business id),
question id=encrypt id(question.id),

) 1
params={
'limit': LIMIT,
'offset': OFFSET,
b
)

assert response.json == {..}

THE BUSINESS FIXTURE

@pytest.fixture
def business id(db session):
return business factory.create(db session)

def create(
session,
name="'Levchins',

business = Business(
name=name,

)

session.add(business)
session.commit ()
return business.id

WHY NOT USE MODELS DIRECTLY?

biz_user_private biz_user biz_user_ business
EE biz_user_id H——H PK | id u PK | id
last_name first_name FK | biz_user_id
email language_preference FK | business_id

WHY NOT USE MODELS DIRECTLY?

def biz user create(session, business id=None, email=None, ..):
"""Creates a biz user with password 'password'"""
biz user = BizUser(

)

session.add(biz user)
session.flush()

session.add(
BizUserPrivate(
biz user id=biz user.id,
email=email,

)

if business id:
add biz user to business(session, biz user.id, business id)

session.commit ()

return biz user.id

DOWNSTREAM SERVICES WITH DATA CREATION APIS

@pytest.fixture
def question(question answer client, business id, confirmed user id):

return question answer client.business.create question(

body={
'text': 'Test question...?',

'platform source': 'other',
'subscription': False,
}o
business id=business id,
) .result().question

PROS AND CONS

Natural fit for pytest fixtures

Much easier data creation

People create separate data entries for each test
"automatically"

Need to maintain data creation factories
Potentially slower (not sharing data across tests)

HOW TO MAKE TESTS FASTER

SEQUENTIAL EXECUTION PARALLEL EXECUTION

A

TIME TIME

=

Source: http://www.methodsandtools.com/tools/selendroid.html

EXECUTE TESTS IN PARALLEL WITH PYTEST

$ pip install pytest-xdist

$ python -m pytest -s -vvv -n 4 tests/acceptance

& BIZCORE-490
& BIZCORE-491
& BIZCORE-492
& BIZCORE-493
& BIZCORE-499
& BIZCORE-500
& BIZCORE-520

Fix high number of failures when running tests in parallel
Fix end_campaign test

Fix special hours related tests

Fix issue with test collection because of invalid token tests
Fix question and answer parallel test execution

Fix notification settings parallel test execution

Enable parallel test execution for all acceptance tests

EXECUTE TESTS IN PARALLEL WITH PYTEST

&) BIZCORE-529 Investigate tests failure

& BIZCORE-530 Refactor all editing tests in detail acceptance tests

&) BIZCORE-669 Fix flaky detail acceptance tests related to service areas
&) BIZCORE-711 Fix flaky detail acceptance test due to bio photo

& BIZACT-1058 Fix flaky acceptance tests related to temporary closures

TAKEAWAYS

e Use fixture factories for faster development and more

correct test data
e Convert tests for test isolation and repeatability

e Take advantage of it by executing tests in parallel

OTHER TALKS BY YELPERS

"Write more decorators (and fewer classes)"
by Antonio Verardi; Tuesday, 10:30, Anfiteatro 2

"Teeing up Python: Code Golf"
by Lee Sheng; Wednesday, 12:10, PyCharm Room

\
velps s

o fb.com/YelpEngineers

o @YelpEngineering

@ engineeringblog.yelp.com

@ github.com/yelp

QUESTIONS?

sjaensch@yelp.com / @s_jaensch

https://github.com/sjaensch/faster_end_to_end_tests_talk.git

