
ETL pipeline to
achieve reliability
at scale
By Isabel López Andrade

Accounting at Smarkets

Accounting at Smarkets

Reports generated daily using
transactions from the exchange.

In 2013, the average number of
daily transactions was under 190K.

In 2018, this figure is over 8.8M.

! Original pipeline

• Difficult to identify errors. "

• Manual work to regenerate reports and expert knowledge of the system. #

• System too slow and unable to scale. It took more than one day to run. $

• Costly storage. %

Requirements

• Fault tolerance and reliability.

• Fast io, availability, durability, and cost efficient.

• Good processing performance.

• Scalable.

Exchange
Generate

transaction files

Generate daily
and monthly

account
statistics

Generate
Accounting

reports

Persistent storage

Fault tolerance and reliability

Vulnerabilities

• Communication with exchange may fail.

• Hardware or so"ware errors may happen while
the job is running.

Design solutions

• Store transactions per day.

• Compute financial statistics per day.

• Retrieve the last two days worth of transactions.

• Break the accounting job into modular Luigi tasks.

class GenerateHumanReadableAccountingReport(AccountingTask):

 def requires(self) -> luigi.Task:
 return GenerateAccountingReport()

 def run(self) -> None:
 with self.input().operate('r') as target_path:
 df_accounting = pd.read_parquet(target_path)

 with self.output().open('w') as file_:
 df_accounting.to_csv(file_, sep='\t', index=False)

 def output(self) -> luigi.Target:
 return self.get_target(path='data/reports/accounting-report.tsv')

Efficient storage

• Columnar storage.

• Only read the columns needed for
the task.

• Minimised I/O.

• Efficient compression and encoding.

• Python support.

Parquet

Row-based

Column-based

Efficient storage

• High durability.

• High availability.

• Low maintenance.

• Cost efficient.

• Decoupling of processing and storage.

• Python library boto/boto3.

• Web interface.

Good performance
Requirements

• Fast data processing.

• Scalable.

Solution

• General purpose data
processing engine.

• Massive parallel. Spark builds its
own execution plans.

• Caches data in RAM.

• Python support.

Action

Result

Create RDD

TransformationRDD

Spark key concepts
RDD

Resilient: fault-tolerant.
Distributed: partitioned across multiple nodes.
Dataset: collection of data.

Dataframes

Data organised in columns built on top of RDDs.
Better performance than RDDs.
User friendly API.

Lineage

Execution on Spark

Spark job from Luigi
class GenerateSmarketsAccountReport(PySparkTask, AccountingTask):

 def requires(self) -> luigi.Task:
 return GenerateAccountingReport()

 def main(self, sc: pyspark.SparkContext) -> None:
 spark = pyspark.sql.SparkSession(sc)
 sdf_per_account = read_parquet(spark, self.input())
 sdf_smarkets = sdf_per_account.filter(
 sdf_per_account.account_id == SMARKETS_ACCOUNT_ID
)
 write_parquet(sdf_smarkets, self.output())

 def output(self) -> luigi.Target:
 return self.get_target(
 path=‘data/reports/accounting-report-smarkets.parquet'
)

Scalability
• Spark cluster.

• Fast deployment.

• Easy to use.

• Flexible.

• Seamless integration with S3 - EMRFS.

• Ability to shutdown the cluster when job is done
without data loss.

• Low cost.

• Nice web interface.

Submit Step

Spark on EMR

EMR

Master Node

Client YARN Resource
Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

EMR

Master Node

YARN Resource
Manager

Slave Node(s)

YARN Container

YARN ContainerYARN Container

Spark on EMR

EMR

Master Node

Client YARN Resource
Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

EMR

Master Node
Client YARN Resource

Manager

Slave Node(s)

YARN Container

YARN ContainerYARN Container

1

Spark on EMR

EMR

Master Node

Client YARN Resource
Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

EMR

Master Node
Client YARN Resource

Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN ContainerYARN Container

1 2

Spark on EMR

EMR

Master Node

Client YARN Resource
Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

EMR

Master Node
Client YARN Resource

Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN ContainerYARN Container

1 2

3

Spark on EMR

EMR

Master Node

Client YARN Resource
Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

EMR

Master Node
Client YARN Resource

Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

YARN Container

Spark Executor

1 2

3

4

Spark on EMR

EMR

Master Node

Client YARN Resource
Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

EMR

Master Node
Client YARN Resource

Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

YARN Container

Spark Executor

1 2

3

4

5

Spark on EMR
EMR

Master Node
Client YARN Resource

Manager

Slave Node(s)

YARN Container

Spark Driver

Spark
Context

YARN Container

Spark Executor

Task Task

YARN Container

Spark Executor

Task Task

1 2

3

4

5

6

Lui gi t ask

Appl i cat i on scr i pt

Lui gi t ask mai n()

Create Spark
cluster on EMR

Upload task
pickle to S3

Add step to EMR
cluster to
execute

application script

Unpickle Luigi
task

Run Luigi task
main()

Dataframe and
RDD operations Store result in S3

Create
SparkContext

instance

Luigi Event Handler

SUCCESS
FAILURE

Luigi Scheduler

no pending
EmrSparkSubmitTask that

can be run succesfully

Destroy EMR
Cluster

Run Accounting
job

Create accounting
container

Start Luigi Central
Scheduler

Run Accounting
wrapper task

Create Spark
cluster on EMR

Submit Luigi tasks
to EMR cluster

Destroy EMR
cluster

Accounting container
and EMR cluster
share/save files

using S3

Poll for step
status

Thanks!

Parquet
+
+

Submit Spark application to EMR from Luigi

Lui gi t ask

Appl i cat i on scr i pt

Lui gi t ask mai n()

Create Spark
cluster on EMR

Upload task
pickle to S3

Add step to EMR
cluster to
execute

application script

Unpickle Luigi
task

Run Luigi task
main()

Dataframe and
RDD operations Store result in S3

Create
SparkContext

instance

Luigi Event handler
SUCCESS
FAILURE

PROCESS_FAILURE
TIMEOUT

BROKEN_TASK
DEPENDENCY_MISSING

Luigi Scheduler
no pending

EmrSparkSubmitTask that
can be run succesfully

Destroy EMR
cluster

Run Accounting
task

Create accounting
container

Start Luigi Central
Scheduler

Run Accounting
wrapper task

Create Spark
cluster on EMR

Submit Luigi tasks
to EMR cluster

Destroy EMR
cluster

Accounting container
and EMR cluster
share/save files

using S3

Poll for step
status

Shutdown EMR cluster

- A task won’t raise an event if one dependency has failed.

- In case of a dependency failure, we want to destroy cluster if the only tasks left depend
on failing task.

- Information about pending tasks and task dependencies fetched from Luigi Central
Scheduler.

Lui gi t ask

Appl i cat i on scr i pt

Lui gi t ask mai n()

Create Spark
cluster on EMR

Upload task
pickle to S3

Add step to EMR
cluster to
execute

application script

Unpickle Luigi
task

Run Luigi task
main()

Dataframe and
RDD operations Store result in S3

Create
SparkContext

instance

Luigi Event Handler

SUCCESS
FAILURE

Luigi Scheduler

no pending
EmrSparkSubmitTask that

can be run succesfully

Destroy EMR
Cluster

Run Accounting
task

Create accounting
container

Start Luigi Central
Scheduler

Run Accounting
wrapper task

Create Spark
cluster on EMR

Submit Luigi tasks
to EMR cluster

Destroy EMR
cluster

Accounting container
and EMR cluster
share/save files

using S3

Poll for step
status

