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Accounting at Smarkets



Accounting at Smarkets

Reports generated daily using 
transactions from the exchange. 

In 2013, the average number of 
daily transactions was under 190K. 

In 2018, this figure is over 8.8M.



! Original pipeline

• Difficult to identify errors. "  

• Manual work to regenerate reports and expert knowledge of the system. #  

• System too slow and unable to scale. It took more than one day to run. $  

• Costly storage. %



Requirements

• Fault tolerance and reliability. 

• Fast io, availability, durability, and cost efficient. 

• Good processing performance. 

• Scalable.
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Fault tolerance and reliability

Vulnerabilities 

• Communication with exchange may fail. 

• Hardware or so"ware errors may happen while 
the job is running.

Design solutions 

• Store transactions per day. 

• Compute financial statistics per day. 

• Retrieve the last two days worth of transactions. 

• Break the accounting job into modular Luigi tasks.



class GenerateHumanReadableAccountingReport(AccountingTask): 

    def requires(self) -> luigi.Task: 
        return GenerateAccountingReport() 

    def run(self) -> None: 
        with self.input().operate('r') as target_path: 
            df_accounting = pd.read_parquet(target_path) 

        with self.output().open('w') as file_: 
            df_accounting.to_csv(file_, sep='\t', index=False) 

    def output(self) -> luigi.Target: 
        return self.get_target(path='data/reports/accounting-report.tsv')



Efficient storage

• Columnar storage. 

• Only read the columns needed for 
the task. 

• Minimised I/O. 

• Efficient compression and encoding. 

• Python support.

Parquet

Row-based

Column-based



Efficient storage

• High durability. 

• High availability. 

• Low maintenance. 

• Cost efficient.  

• Decoupling of processing and storage. 

• Python library boto/boto3. 

• Web interface.



Good performance
Requirements 

• Fast data processing. 

• Scalable.

Solution 

• General purpose data 
processing engine. 

• Massive parallel. Spark builds its 
own execution plans. 

• Caches data in RAM. 

• Python support.



Action

Result

Create RDD

TransformationRDD

Spark key concepts
RDD 

Resilient: fault-tolerant. 
Distributed: partitioned across multiple nodes. 
Dataset: collection of data.

Dataframes 

Data organised in columns built on top of RDDs. 
Better performance than RDDs. 
User friendly API.

Lineage



Execution on Spark



Spark job from Luigi
class GenerateSmarketsAccountReport(PySparkTask, AccountingTask): 

    def requires(self) -> luigi.Task: 
        return GenerateAccountingReport() 

    def main(self, sc: pyspark.SparkContext) -> None: 
        spark = pyspark.sql.SparkSession(sc) 
        sdf_per_account = read_parquet(spark, self.input()) 
        sdf_smarkets = sdf_per_account.filter( 
          sdf_per_account.account_id == SMARKETS_ACCOUNT_ID 
        ) 
        write_parquet(sdf_smarkets, self.output()) 

    def output(self) -> luigi.Target: 
        return self.get_target( 
          path=‘data/reports/accounting-report-smarkets.parquet' 
        )



Scalability
• Spark cluster. 

• Fast deployment. 

• Easy to use. 

• Flexible. 

• Seamless integration with S3 - EMRFS. 

• Ability to shutdown the cluster when job is done 
without data loss. 

• Low cost. 

• Nice web interface.

Submit Step



Spark on EMR
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Spark on EMR
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Spark on EMR
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Spark on EMR
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Spark on EMR
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Spark on EMR
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Spark on EMR
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Thanks!
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Submit Spark application to EMR from Luigi
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Shutdown EMR cluster

- A task won’t raise an event if one dependency has failed.


- In case of a dependency failure, we want to destroy cluster if the only tasks left depend 
on failing task.


- Information about pending tasks and task dependencies fetched from Luigi Central 
Scheduler.
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