
Easy Interactive Data Applications with Dash
Matteo Guzzo

EuroPython 2018, Edinburgh

whoami

Matteo Guzzo, PhD

Data Science Consultant @ Berlin, Germany

Find me @:

guzzo.matteo@gmail.com
Twitter: @_teoguso
GitHub/GitLab: teoguso
LinkedIn: matteoguzzo

My �rst dataviz stack
(please don't judge)

1. Bash, awk, sed, grep, etc
2. Gnuplot

My current dataviz stack
1. Jupyter notebooks + pandas
2. Matplotlib (sometimes Seaborn)

Just another day in the life of a data scientist...

Just another day in the life of a data scientist...
You have done the greatest work of your life and you can't wait to show it to
the world
(did anyone say reporting?)

Just another day in the life of a data scientist...
You have done the greatest work of your life and you can't wait to show it to
the world
(did anyone say reporting?)

Problem 1: the world (aka your boss/client) only uses windows and has no
idea what python or jupyter are.

Just another day in the life of a data scientist...
You have done the greatest work of your life and you can't wait to show it to
the world
(did anyone say reporting?)

Problem 1: the world (aka your boss/client) only uses windows and has no
idea what python or jupyter are.

Problem 2 (better?): they ask you to change small things all the time (e.g. axes
limits)

Just another day in the life of a data scientist...
You have done the greatest work of your life and you can't wait to show it to
the world
(did anyone say reporting?)

Problem 1: the world (aka your boss/client) only uses windows and has no
idea what python or jupyter are.

Problem 2 (better?): they ask you to change small things all the time (e.g. axes
limits)

Problem 3 (best?): they want to play around with the visualization themselves
aka "Could you do it in Excel?" �

Or...

You just want to show o�

You just want to show o�

(that's �ne too)

Enter Plotly.py

Enter Plotly.py

Python API for plotly.js

Open source

Interactive!

Works well with Jupyter notebooks

Plotly.py
plotly.graph_objects contains the main components of a plot:

Figure contains all info for the visualization (data and layout)

Layout contains all info for styling

Scatter, Bar, Heatmap, etc, express different type of graphs.

NOTE: These objects can always be swapped with python dicts

Plotly.py
Minimal plotly example:

import plotly.graph_objs as go
go.FigureWidget(data=[dict(x=[0,1,2], y=[3,4,2])])

Dash by Plotly

Dash by Plotly

https://plot.ly/products/dash/ (https://plot.ly/products/dash/)

https://plot.ly/products/dash/

Dash

Dash
Frontend: JS (Plotly, React)

Dash
Frontend: JS (Plotly, React)

Backend: Flask

Dash
Frontend: JS (Plotly, React)

Backend: Flask

You don't need to know any of that! (sort of...)

Minimal example
import dash
import dash_html_components as html

app = dash.Dash()

app.layout = html.Div('Hello EuroPython!')

if __name__ == '__main__':
 app.run_server()

Dash - main components
Layout (UI)

html components
core components

Callbacks

Core Components
aka the moving, clickety stuff.

Example app with a lot of those (https://dash-oil-and-gas.plot.ly/)

https://dash-oil-and-gas.plot.ly/

Graphs
Core component that accepts plotly.py go.Figure object!

Graphs
import dash_core_components as dcc
import plotly.graph_objs as go

app.layout = html.Div([
 html.H1('Hello EuroPython!'),
 dcc.Graph(
 id='my-first-graph' ,
 figure=dict(data=[dict(x=[0,1,2], y=[3,4,2])]),
)
])

Callbacks
Where the magic happens!

Callbacks
from dash.dependencies import Input, Output

app.layout = html.Div([
 dcc.Input(id='my-id', value='initial value' , type='text'),
 html.Div(id='my-div')
])

@app.callback(
 Output(component_id='my-div', component_property ='children'),
 [Input(component_id='my-id', component_property ='value')]
)
def update_output_div (input_value):
 return 'You\'ve entered "{}"' .format(input_value)

CSS
Let's make it prettier!

CSS
app.css.append_css({'external_url' : 'https://codepen.io/chriddyp/pen/bWLwg
P.css'})
app.layout = html.Div([
 dcc.Input(id='my-id', value='initial value' , type='text'),
 html.Div(id='my-div'),
],
 className='container',
)

To summarize
Html components (HTML tags)
"Core" components (sliders, bu ttons, graphs)
Graph objects use Plotly.py objects
Callbacks connect the pieces
CSS classes for pretty layout and styling

Deployment
Did I mention you don't need to know any Flask, JS, etc...?

Deployment
Did I mention you don't need to know any Flask, JS, etc...?

I lied.

Deployment

Deployment

You have choices:

1. Don't bother (1-person, loca l use only)

2. Know Flask

3. PaaS (e.g. Heroku, Digital Ocean)

4. Ask your engineer friend (aka Stack Over�ow)

5. Ask Plotly (probably not for free)

Extra fancy stu�
(Non-exhaustive list)

External JS
Caching
Optional WebGL graphs for billion-point visualization (actually >15K)
Live updates
Authentication

So, it's cool and all, but...

So, it's cool and all, but...
You still need a web designer ¯_(ツ)_/¯
Understanding/debugging JS errors
Of�ine mode not well supported y et/erratic
Deployment at scale might not be trivial (but Heroku!)

I made something
twitch-viz.herokuapp.com (https://twitch-viz.herokuapp.com)

https://twitch-viz.herokuapp.com/

Questions?
Tweet at me @_teoguso

Further Reading/Help
User guide:
Community Forum:

https://dash.plot.ly/ (https://dash.plot.ly/)
https://community.plot.ly/ (https://community.plot.ly/)

https://dash.plot.ly/
https://community.plot.ly/

