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My �rst dataviz stack
(please don't judge)

1. Bash, awk, sed, grep, etc
2. Gnuplot



My current dataviz stack
1. Jupyter notebooks + pandas
2. Matplotlib (sometimes Seaborn)
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Just another day in the life of a data scientist...
You have done the greatest work of your life and you can't wait to show it to
the world 
(did anyone say reporting?)

Problem 1: the world (aka your boss/client) only uses windows and has no
idea what python or jupyter are.

Problem 2 (better?): they ask you to change small things all the time (e.g. axes
limits)

Problem 3 (best?): they want to play around with the visualization themselves 
aka "Could you do it in Excel?" �



Or...



You just want to show o�



You just want to show o�

(that's �ne too)



Enter Plotly.py



Enter Plotly.py

Python API for plotly.js

Open source

Interactive!

Works well with Jupyter notebooks



Plotly.py
plotly.graph_objects  contains the main components of a plot:

Figure contains all info for the visualization (data and layout)

Layout contains all info for styling

Scatter, Bar, Heatmap, etc, express different type of graphs.

NOTE: These objects can always be swapped with python dicts



Plotly.py
Minimal plotly example:

import plotly.graph_objs  as go 
go.FigureWidget(data=[dict(x=[0,1,2], y=[3,4,2])]) 
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https://plot.ly/products/dash/ (https://plot.ly/products/dash/)

https://plot.ly/products/dash/
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Dash
Frontend: JS (Plotly, React)

Backend: Flask

You don't need to know any of that! (sort of...)



Minimal example
import dash 
import dash_html_components  as html 
 
app = dash.Dash() 
 
app.layout = html.Div('Hello EuroPython!' ) 
 
if __name__ == '__main__': 
    app.run_server() 



Dash - main components
Layout (UI)

html components
core components

Callbacks



Core Components
aka the moving, clickety stuff.

Example app with a lot of those  (https://dash-oil-and-gas.plot.ly/)

https://dash-oil-and-gas.plot.ly/


Graphs
Core component that accepts plotly.py go.Figure object!



Graphs
import dash_core_components  as dcc 
import plotly.graph_objs  as go 
 
app.layout = html.Div([ 
        html.H1('Hello EuroPython!' ), 
        dcc.Graph( 
            id='my-first-graph' , 
            figure=dict(data=[dict(x=[0,1,2], y=[3,4,2])]), 
            ) 
]) 



Callbacks
Where the magic happens!



Callbacks
from dash.dependencies  import Input, Output 
 
app.layout = html.Div([ 
    dcc.Input(id='my-id', value='initial value' , type='text'), 
    html.Div(id='my-div') 
]) 
 
@app.callback( 
    Output(component_id='my-div', component_property ='children'), 
    [Input(component_id='my-id', component_property ='value')] 
) 
def update_output_div (input_value): 
    return 'You\'ve entered "{}"' .format(input_value) 



CSS
Let's make it prettier!



CSS
app.css.append_css({'external_url' : 'https://codepen.io/chriddyp/pen/bWLwg
P.css'}) 
app.layout = html.Div([ 
    dcc.Input(id='my-id', value='initial value' , type='text'), 
    html.Div(id='my-div'), 
], 
    className='container', 
) 



To summarize
Html components (HTML tags)
"Core" components (sliders, bu ttons, graphs)
Graph objects use Plotly.py objects
Callbacks connect the pieces
CSS classes for pretty layout and styling
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Deployment
Did I mention you don't need to know any Flask, JS, etc...?

I lied.



Deployment



Deployment

You have choices:

1. Don't bother (1-person, loca l use only)

2. Know Flask

3. PaaS (e.g. Heroku, Digital Ocean)

4. Ask your engineer friend (aka Stack Over�ow)

5. Ask Plotly (probably not for free )



Extra fancy stu�
(Non-exhaustive list)

External JS
Caching
Optional WebGL graphs for billion-point visualization (actually >15K)
Live updates
Authentication



So, it's cool and all, but...



So, it's cool and all, but...
You still need a web designer  ¯\_(ツ)_/¯
Understanding/debugging JS errors
Of�ine mode not well supported y et/erratic
Deployment at scale might not be trivial (but Heroku!)



I made something
twitch-viz.herokuapp.com  (https://twitch-viz.herokuapp.com)

https://twitch-viz.herokuapp.com/


Questions?
Tweet at me @_teoguso

Further Reading/Help
User guide: 
Community Forum: 

https://dash.plot.ly/ (https://dash.plot.ly/)
https://community.plot.ly/ (https://community.plot.ly/)

https://dash.plot.ly/
https://community.plot.ly/

