
Create your own Artificial Intelligence to monitor your Linux System!

Maha Mdini, PhD student, IMT Atlantique,
Data engineer, Astellia/Exfo

Troubleshooting Security

ABSTRACT

Performance

Manual monitoring of Linux
systems consists on monotonous
and repetitive tasks that may take
some effort and time to the user. In
order to automate these processes,
one may think of simple artificial
intelligence techniques that are
easily understood, implemented
and tested by the user. This poster
proposes some examples of
straightforward techniques based
on statistical calculations to
automate system troubleshooting
and performance monitoring. The
use cases explored here are just
simple examples and more
elaborate ideas could be thought
of.

A customized messaging system could be attached
to this algorithm and alerts the user every time an
anomaly occurs.
This solution is simple and applicable to any log
file containing events repeatedly occurring within
the same range of times such as var/log/boot.log .

/var/log/kern.log
This file contains events logged by the Linux
kernel. The logged warnings and errors help to
troubleshoot the kernel and debug hardware and
connectivity issues.
Errors do not mean the existence of a real issue.
For example, we may have logged connectivity
errors before a wireless connection is correctly
established. In order to detect real problems, we
may study the distribution of the number of errors
during a period of time (learning phase), then
trigger an alert when an error occur more times
than expected. To do so, we start by parsing the
log file.

Then we count the number of occurrences of each
event:

Here is an example of what we may get:

Then, we save S into a file which name is the
current date:

We run this procedure every time we boot the
computer. We may use crontab for that. Then
when we have enough data, we can create our
model (distribution). First, we start by reading all
the data into one data frame L:

Each row of L contains an event (the index) and its
number of occurrences at each date.
For each event, we assume that it has a Gaussian
distribution and we estimate its parameters
(mean, standard deviation) and store them in a
data frame P.

Here is the code to plot the distribution of an
example of errors: ‘'hp_wmi: query 0xd returned
error 0x5'’

Here is the graph of the theoretical
distribution:

To detect that an anomaly (an error/warning
occurring more than expected), we set a
threshold equal mu+ 3std.

This is the end of the learning phase. To
detect anomalies in real time, we read new
data as explained before in the first code
block, calculate the number of occurrences of
each event S (second code block), add it to P
as the real time values:

We trigger an alert if a real time value is
greater than its corresponding threshold.

Linux

/var/log/auth.log
This file contains authentication attempts and user
authorization related events in Debian like systems.
In CentOS systems, this file is named var/log/secure.
By tracking login attempts, we can detect attacks
related to authentication/authorization such as brute
force attacks.
To do so, we start by parsing the log file and extracting
a time series containing the number of failed login
attempts.

Here is an example of what we may obtain:

The isolated failed login attempt could be seen as the
user making an error when typing his password.
However, the repeated attempts are an external
attack.
In order to detect the attack, we apply the cumulative
sum to the time series.

Here is the cumulative sum time series:

Then, to detect abrupt increase in the number of failed
login attempts, we compute the relative derivative of
the cumulative sum.
The relative derivative of a time series x(t):

To do so:

Then, we set a threshold in the derivative to trigger the
alert:

We obtain the following result:

This process can run in real time and be attached to a
messaging system to alert the user about attacks
happening in real time.
This algorithm is an example of automating
authentication attempts monitoring.

auth.log contains information other than failed login
attempts that could be monitored to detect security
issues such as:

 session duration
 executed commands

Figure 5. A time series of failed login attempts.

cumsum=S.cumsum()
S.plot()

Figure 6. The cumulative sum of failed login attempts.

x ' (t)=
x (t)− x (t −1)

x (t −1)

diff=(cumsum-cumsum.shift(periods=1))/cumsum.shift(periods=1)
diff.plot()

alerts= diff.where(diff>.2).dropna()
alerts.plot(color='red', style='.')

Figure 7. Relative derivative of the cumulative sum
+ attack detection .

S=df['events'].value_counts()

atkbd serio0: Unknown key released 287
ACPI: Power Resource [WRST] (on) 171
ACPI: Dynamic OEM Table Load: 63
IPv6: wlp1s0: link is not ready 61

S.to_csv('learning/'+str(datetime.now())+'.csv')

L=pd.DataFrame()
for file in os.listdir('learning'):
 z=pd.read_csv('learning/'+file, names=[file])
 L=pd.concat([L, z], axis=1)

P=pd.DataFrame(columns=['mu','std'])
for index, row in L.iterrows():
 mu=np.mean(row.values)
 s=np.std(row.values)
 P.loc[index]=[mu,s]

mu,s=P.loc['hp_wmi: query 0xd returned error 0x5']
x_axis= np.arange(mu-3*s,mu+3*s,.5)
plt.plot(x_axis,sp.norm.pdf(x_axis,mu,s))

Figure 1. The Probability Density Function of the
number of occurrences of an error

P['threshold']=P['mu']+3*P['std']

P['real_time']=S

P['alert']= P['real_time']>P['threshold']

file= '/var/log/auth.log'
with open(file) as f:
 content = f.readlines()
content = [x.strip() for x in content]
times= [datetime.strptime(i[:15], '%b %d %H:%M:%S')
 .replace(year=2018) for i in content]
failures=[1 if 'failure' in c else 0 for c in content]
S= pd.Series(failures, index=times)
S.plot()

import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sp
from sklearn.decomposition import PCA
import os, re

Sar command line collects performance data in
real time to monitor the CPU, memory and I/O.
To create a log file containing CPU performance:

Then, we read the file and parse data, to create a
data frame:

At this level, we have a data frame of CPU usage
by the user, the system, I/O waiting processes,
nice (process with modified priority) .

Here is the output data frame:

The data contain many peaks. To put the data
frame into a more understandable shape, we
apply the moving average:

Here is the output data frame:

In order to detect peaks of CPU usage, we may
apply Principal Component Analysis (PCA), to
project all the components on one axis containing
the maximum of variance of the 5 components.
(The PCA is based on linear combinations) .

Here is the result:

To see the coordinates of the new axis and the
variance kept in the PCA projection:

Now, we can set a threshold in this axis to detect
CPU usage peaks and then alert the user.

file= '/var/log/kern.log'
with open(file) as f:
 content = f.readlines()
content = [x.strip() for x in content]
times= [datetime.strptime(i[:15], '%b %d %H:%M:
%S').replace(year=2018) for i in content]
events = [x[65:] for x in content]
df=pd.DataFrame(events,index=times, columns=['events'])

References

www.eurovps.com/blog/important-linux-log-files-
you-must-be-monitoring/

Artificial Intelligence consists on
statistical tools and Machine
Learning techniques that enable
the computer to make “decisions”
based on data. In this poster, we
are using Python packages that
contain a variety of functions to
analyze data. The following
instructions are used to import the
packages needed for our analysis.

Linux gathers data about the
system and the running
applications in log files. These files
help in troubleshooting the system,
understanding security issues,
monitoring services and
applications and modeling the user
behavior. Log files are located in the
repository \var\log of the Linux file
system. They keep track of
important events related to
services, applications, the system
and the Linux kernel. By analyzing
these data, one may gain a clear
insight about the system in hands.

Artificial Intelligence

sar -u 1 4000 > sar.log

P['alert']= P['real_time']>P['threshold']P['alert']= P['real_time']>P['threshold']

file='sar.log'
with open(file) as f:
 content = f.readlines()
content = [x.strip() for x in content]
content = [x.replace(',', '.') for x in content]
content=content[2:-1]
content = [re.split(' *', x) for x in content]
columns= content[0]
df = pd.DataFrame(content[1:], columns=columns)
df.columns.values[0] = 'time'
df['time']=df['time'].apply(lambda x:datetime.strptime(x, '%H:%M:
%S').time())
df = df.set_index('time')
df.drop(['CPU','%idle'],axis=1,inplace=True)
df=df.astype('float')

df.plot()
plt.xticks(rotation=90)

Figure 2. CPU usage by different tasks.

df=df.rolling(window=100).mean()
df.dropna(inplace=True)

Figure 3. The moving average of the CPU usage.

pca = PCA(n_components=1)
res=pca.fit_transform(df)

print(pca.components_, pca.explained_variance_ratio_)

Figure 4. PCA projection.

