Bridging the Gap:
From Data Science to Production

Florian Wilhelm

EuroPython 2018 @ Edinburgh, 2018-07-25
Dr. Florian Wilhelm
Principal Data Scientist @ inovex

Special Interests
- Mathematical Modelling
- Recommendation Systems
- Data Science in Production
- Python Data Stack

@FlorianWilhelm
FlorianWilhelm
florianwilhelm.info
IT-project house for digital transformation:

- Agile Development & Management
- Web · UI/UX · Replatforming · Microservices
- Mobile · Apps · Smart Devices · Robotics
- Big Data & Business Intelligence Platforms
- Data Science · Data Products · Search · Deep Learning
- Data Center Automation · DevOps · Cloud · Hosting
- Trainings & Coachings

Using technology to inspire our clients. And ourselves.

inovex offices in
Karlsruhe · Cologne · Munich · Pforzheim · Hamburg · Stuttgart.

www.inovex.de
Agenda

Many facets

Data Science to Production

- Use-Case
- Deployment
- Quality Assurance
- Organisation
- Languages
Use-Case: High Level Perspective
What does your model pipeline look like?
Use-Case: High Level Perspective

What is your Data Source?

Variants:
- Database (PostgreSQL, C*)
- Distributed Filesystem (HDFS)
- Stream (Kafka)
- ...

How is your data accessed?

What are the frequency and recency requirements?
Batch, Near-Realtime, Realtime, Stream?
Use-Case: High Level Perspective

What is a model?

Model includes:
- Preprocessing (cleansing, imputation, scaling)
- Construction of derived features (EMAs)
- Machine Learning Algorithm (Random Forest, ANN)
- ...

Is the input of your model raw data or pregenerated features?

Does your model have a state?
Use-Case: High Level Perspective

How is your result stored?

Variants:
- Database (PostgreSQL, C*)
- Distributed Filesystem (HDFS)
- Stream (Kafka)
- On demand (REST API)
- ...

What are the frequency and recency requirements?
Batch, Near-Realtime, Realtime, Stream?
Use-Case: High Level Perspective

Our challenge

Production

Data → Interface → Model → Interface → Results

Deployment
Use-Case Evaluation

Characteristics of a Data Use-case

<table>
<thead>
<tr>
<th>Delivery</th>
<th>Problem Class</th>
<th>Volume & Velocity</th>
<th>Inference / Prediction</th>
<th>Technical Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebService</td>
<td>Classification</td>
<td>10 GB weekly</td>
<td>Batch</td>
<td>Java-Stack + Python</td>
</tr>
<tr>
<td>Stream</td>
<td>Regression</td>
<td>1 GB daily</td>
<td>Near-Realtime</td>
<td>On-Premise</td>
</tr>
<tr>
<td>Database</td>
<td>Recommendation</td>
<td>10k events/s</td>
<td>Realtime</td>
<td>AWS Cloud</td>
</tr>
<tr>
<td></td>
<td>Explainability?</td>
<td></td>
<td></td>
<td>Stream</td>
</tr>
</tbody>
</table>

Note down your specific requirements before thinking about an architecture. There is no one size fits all!
Use-Case: High Level Perspective
Right from the Start

- State the requirements of your data use-case
- Identify and check data sources
- Define interfaces with other teams/departments
- Test the whole data flow and infrastructure early on with a dummy model
Many facets
It’s an iterative Process

Quality Assurance for smooth iterations

CRISP-DM
Clean Code

Clean code is code that is easy to understand and easy to change.

Resources:
- Software Design Patterns
- SOLID Principles
- The Pragmatic Programmer
- The Software Craftsman

https://www.linkedin.com/pulse/5-pro-tips-data-scientists-write-good-code-jason-byrne/
Continuous Integration

- Version, package and manage your artefacts
- Provide tests (unit, systems, ...)
- Automize as much as possible
- Embrace processes

Monitoring
KPI and Stats

• KPIs (CTR, Conversions)
• Number of requests
• Timeouts, delays
• Total number of predictions
• Runtimes
• ...

All monitoring needs to be linked to the currently running version of your model!
Monitoring

@Google

Site Reliability Engineering
How Google Runs
Production Systems

Monitoring

Model Stats

Monitor the results of model’s predictions

Example:
Response Distribution Analysis

a) working model
b) confused model
A/B Tests

Feedback for your model

• Always compare your “improved“ model to the current baseline
• Allows comparing two models not only in offline metrics but also online metrics and KPIs.
• Also possible to adjust hyperparameters with online feedback, e.g. multi-armed bandit
A/B Tests

Technical requirements

• Versioning of your models to allow linking them to test groups
• Deploying and serving several models at the same time independently (needed for fast rollback anyway!)
• Tracking the results of a given model up to the point of facing the customer
Many facets

Data Science to Production

Organisation
Languages
Use-Case
Quality Assurance
Deployment
Organisation of Teams

Wall of Confusion

Developers
• Code
• Tests
• Releases
• Version Control
• Continuous Integration
• Features

Operations
• Packaging
• Deployment
• Lifecycle
• Configuration
• Security
• Monitoring

Sebastian Neubauer - There should be one obvious way to bring python into production https://www.youtube.com/watch?v=hnQKsxKjCUo
Different Cultures/Thinking

Wrong Approach!

• Especially dangerous separation for data products/features
• Speed and Time to Market are important thus “not my job“-thinking hurts
• “I made a great model“ vs. „We made a great data product“
Organisation of Teams
Overcoming the Wall of Confusion

Continuous Delivery

Heterogeneous Teams
How to bring Data Scientists into DevOps?

• Pure teams of Data Scientists often struggle to get anything in production
• As a minimum complement, SW and Data Engineers are needed. (2-3 Engineers per Data Scientist)
• Optionally a Data Product Manager as well as an UI/UX expert if necessary
Organisation around Features

Responsibility with vertical teams

- Fully autonomous teams
- End-to-end responsibility for a feature
- Works well with Agile Methods like Scrum
- Faster delivery and less politics
Many facets

Data Science to Production

- Languages
- Use-Case
- Organisation
- Quality Assurance
- Deployment
Programming Languages

The Two Language Problem

Industry
- Java stack common also Scala
- Strongly typed
- Emphasize on robustness and edge cases
- Industrial standards for deployment

Science
- Often Python and R
- Dynamic typed since easier to get the job done
- Emphasize on fancy methods and results
- Runs on my machine
Language Problem

Solution: Select one to rule them all!

- Having a single language reduces the complexity of deployment
- Implementation efforts due to abandoning one ecosystem totally
Language Problem

Solution: Python in production

• Especially easy for batch prediction use-cases
• If a web service is needed, Flask is a viable option
• Scale horizontally during prediction and use a big metal node for training a model
• Tap into the Hadoop world by using PySpark, PyHive etc.
• Consider isolated containers using Docker
Language Problem

Solution: PoCs in Python/R, rewrite in Java for production

- Lots of efforts and slow
- Iterations and new feature are hard to implement
- Reproducability of bugs is cumbersome
- Pro: Everyone gets what they want
Language Problem

Solution: Exchangable formats

- Works great in theory
- Limited functionality and flexibility
- No guarantee the same model description will be interpreted the same by two different implementations
- Preprocessing / feature generation not included
Language Problem

Solution: Frameworks

• Various language bindings allow developing in Python/R and running on the Java stack
• Be aware if framework also covers feature generation
• Ease of use at the cost of flexibility
Two Language Problem
Three concepts of dealing with it

Reimplement

Frameworks

Single Language
Many facets

Data Science to Production

- Organisation
- Quality Assurance
- Deployment
- Use-Case
- Languages
Deployment heavily depends on the chosen approach!

Still some software engineering principles apply like Continuous Integration or even Continuous Delivery
Technical Debt in ML Pipelines

Deployment

Configuration

Data Collection

Data Verification

Machine Resource Management

Analysis Tools

Process Management Tools

Serving Infrastructure

Monitoring

Deployment

General principles

• Versioning & packaging, defined processes, quality management
• Keep the development and production environment as similar as possible
• Automation is a must, avoid human error!
• Isolated and controllable environments are a great idea, e.g. Docker.
Google’s Best Practices for ML Engineering

Best of Google’s rules

Rule #1: Don’t be afraid to launch a product without machine learning.
Rule #2: First, design and implement metrics
Rule #4: Keep the first model simple and get the infrastructure right.
Rule #5: Test the infrastructure independently from the machine learning
Rule #9: Detect problems before exporting models.
Rule #11: Give feature columns owners and documentation.
Rule #13: Choose a simple, observable and attributable metric for your first objective.
Rule #14: Starting with an interpretable model makes debugging easier.
Rule #16: Plan to launch and iterate.
Rule #24: Measure the delta between models.
Rule #27: Try to quantify observed undesirable behavior. "measure first, optimize second”
Rule #32: Re-use code between your training pipeline and your serving pipeline whenever possible.

Most of the problems are engineering problems!

Example: Continuous Integration

Jenkins

1: clone repo

2: build package

3: push package

4: trigger job

5: install package

6: clone repo

7: run unit tests

8: push package

Git Repository

Artifact Store

index

unstable

testing

stable
Example: Python Package/Distribution

PyScaffold

- Easy and sane Python packaging
- Proper versioning of every commit
- Git integration, e.g. pre-commit
- Declarative configuration with setup.cfg
- Follows community standards
- Many extensions available

$> pip install pyscaffold
$> putup my_project
Key Learnings

Data Science to Production

• Dependent on your use-case, no one-size fits all!
• Think early on about QA
• DevOps Culture & team responsibility
• Choose a framework or single language to overcome the Two-Language-Problem
• Embrace processes & automation

Production is NOT an Afterthought!