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IT-project house for digital transformation:
‣ Agile Development & Management
‣ Web · UI/UX · Replatforming · Microservices
‣ Mobile · Apps · Smart Devices · Robotics
‣ Big Data & Business Intelligence Platforms
‣ Data Science · Data Products · Search · Deep Learning
‣ Data Center Automation · DevOps · Cloud · Hosting
‣ Trainings & Coachings

Using technology to inspire our 
clients. And ourselves. 
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Karlsruhe · Cologne · Munich · 
Pforzheim · Hamburg · Stuttgart. 

www.inovex.de
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Use-Case: High Level Perspective
What does your model pipeline look like?

f(...)Data
Results

Model
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Use-Case: High Level Perspective
What is your Data Source?

Data

Variants:
• Database (PostgreSQL, C*)
• Distributed Filesystem (HDFS)
• Stream (Kafka)
• ...

How is your data accessed?

What are the frequency and recency requirements?
Batch, Near-Realtime, Realtime, Stream?
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Use-Case: High Level Perspective
What is a model?

Model

Model includes:
• Preprocessing (cleansing, imputation, scaling)
• Construction of derived features (EMAs)
• Machine Learning Algorithm (Random Forest, ANN)
• ...

Is the input of your model raw data or pregenerated features?

Does your model have a state?

7



Use-Case: High Level Perspective
How is your result stored?

Results

Variants:

• Database (PostgreSQL, C*)

• Distributed Filesystem (HDFS)

• Stream (Kafka)

• On demand (REST API)

• ...

What are the frequency and recency requirements?
Batch, Near-Realtime, Realtime, Stream?
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Use-Case: High Level Perspective
Our challenge

ModelData
Results

Deployment

Interface Interface

Production
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Use-Case Evaluation

Delivery Problem Class Volume &
Velocity

Inference / 
Prediction

Technical 
Conditions

WebService Classification 10 GB weekly Batch Java-Stack +
Python

Stream Regression 1 GB daily Near-Realtime On-Premise

Database Recommendation 10k events/s Realtime AWS Cloud

Explainability? Stream

Characteristics of a Data Use-case

Note down your specific requirements before thinking about an architecture.
There is no one size fits all!
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Use-Case: High Level Perspective
Right from the Start

• State the requirements of your data use-case

• Identify and check data sources

• Define interfaces with other teams/departments

• Test the whole data flow and infrastructure early on with 
a dummy model
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It‘s an iterative Process
Quality Assurance for smooth iterations

Data

Business 
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

Deployment CRISP-DM
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http://clean-code-developer.de/

Clean Code

Clean code is code that is easy to understand and easy to change.

Resources:
• Software Design Patterns
• SOLID Principles
• The Pragmatic Programmer
• The Software Craftsman
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https://www.linkedin.com/pulse/5-pro-tips-data-scientists-write-good-code-jason-byrne/



https://huddle.eurostarsoftwaretesting.com/4-ways-automation-and-ci-are-changing-testing-and-development/

Continuous Integration

• Version, package 
and manage your 
artefacts

• Provide tests (unit, 
systems, ...)

• Automize as much 
as possible

• Embrace processes
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Monitoring
KPI and Stats

• KPIs (CTR, Conversions)

• Number of requests

• Timeouts, delays

• Total number of predictions

• Runtimes

• ... All monitoring needs to be linked to 
the currently running version of your 
model!
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17https://landing.google.com/sre/book/chapters/part3.html

Monitoring

Site Reliability Engineering
How Google Runs 
Production Systems

@Google



Lucas Javier Bernardi | Diagnosing Machine Learning Models: https://www.youtube.com/watch?v=ZD8LA3n6YvI

Monitoring
Model Stats

Monitor the results of 
model‘s predicitons

Example:
Response Distribution 
Analysis

a) working model
b) confused model

a)

b)
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A/B Tests
Feedback for your model

• Always compare your “improved“ 
model to the current baseline

• Allows comparing two models not 
only in offline metrics but also 
online metrics and KPIs. 

• Also possible to adjust 
hyperparameters with online 
feedback, e.g. multi-armed bandit
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A/B Tests
Technical requirements

• Versioning of your models to allow linking them to test 
groups

• Deploying and serving several models at the same time 
independently (needed for fast rollback anyway!)

• Tracking the results of a given model up to the point of 
facing the customer

Serving
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Sebastian Neubauer - There should be one obvious way to bring python into production https://www.youtube.com/watch?v=hnQKsxKjCUo

Organisation of Teams
Wall of Confusion

• Code

• Tests

• Releases

• Version Control

• Continuous 
Integration

• Features

Developers
• Packaging

• Deployment

• Lifecycle

• Configuration

• Security

• Monitoring

Operations

Release
v1.2.3
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Different Cultures/Thinking
Wrong Approach!

• Especially dangerous 
separation for data 
products/features

• Speed and Time to Market 
are important thus “not my 
job“-thinking hurts

• “I made a great model“ vs. 
„We made a great data 
product“
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https://en.wikipedia.org/wiki/DevOps

Organisation of Teams
Overcoming the Wall of Confusion

Continuous Delivery

Dev Ops
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http://101.datascience.community/2016/11/28/data-scientists-data-engineers-software-engineers-the-difference-according-to-linkedin/

Heterogeneous Teams
How to bring Data Scientists into DevOps?

• Pure teams of Data Scientists 
often struggle to get anything in 
production

• As a minimum complement, SW 
and Data Engineers are needed. 
(2-3 Engineers per Data Scientist)

• Optionally a Data Product 
Manager as well as an UI/UX 
expert if necessary 
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http://www.full-stackagile.com/2016/02/14/team-organisation-squads-chapters-tribes-and-guilds/

Organisation around Features
Responsibility with vertical teams

• Fully autonomous teams
• End-to-end responsibility for a feature
• Works well with Agile Methods like Scrum
• Faster delivery and less politics
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Programming Languages
The Two Language Problem

Industry

• Java stack common 
also Scala

• Strongly typed 
• Emphasize on 

robustness and edge 
cases

• Industrial standards 
for deployment

Science

• Often Python and R
• Dynamic typed since 

easier to get the job 
done

• Emphasize on fancy 
methods and results

• Runs on my machine
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Language Problem
Solution: Select one to rule them all!

• Having a single language reduces 
the complexity of deployment

• Implementation efforts due to 
abandoning one ecosystem totally
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https://www.analyticsvidhya.com/blog/2017/09/machine-learning-models-as-apis-using-flask/

Language Problem
Solution: Python in production

• Especially easy for batch prediction use-cases

• If a web service is needed flask is a viable 
option

• Scale horizontally during prediction and use a 
big metal node for training a model

• Tap into the Hadoop world by using PySpark, 
PyHive etc.

• Consider isolated containers using docker
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Language Problem
Solution: PoCs in Python/R,  rewrite in Java for production

• Lots of efforts and slow

• Iterations and new feature are 
hard to implement

• Reproducability of bugs is 
cumbersome

• Pro: Everyone gets what they 
want

Worst-case Scenario
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Language Problem
Solution: Exchangable formats

• Works great in theory
• Limited functionality and 

flexibility
• No guarantee the same model 

description will be interpreted 
the same by two different 
implementations

• Preprocessing / feature 
generation not included
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Language Problem
Solution: Frameworks

• Various language bindings allow developing 
in Python/R and running on the Java stack

• Be aware if framework also covers feature 
generation

• Ease of use at the cost of flexibility 
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Two Language Problem
Three concepts of dealing with it

Reimplement Frameworks Single Language

1 2 3x
34
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Deployment

Deployment heavily depends 
on the chosen approach!

Still some software engineering principles 
apply like Continuous Integration or even 
Continuous Delivery 
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Sculley et al (2015), Hidden Technical Debt in Machine Learning Systems 

Technical Debt in ML Pipelines

Deployment
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Deployment
General principles

• Versioning & packaging, defined processes, quality 
management

• Keep the development and production environment as 
similar as possible

• Automation is a must, avoid human error!

• Isolated and controllable environments are a great idea, 
e.g. Docker.
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39https://developers.google.com/machine-learning/rules-of-ml/

Google‘s Best Practices for ML Engineering
Best of Google‘s rules

Rule #1: Don’t be afraid to launch a product without machine learning.

Rule #2: First, design and implement metrics
Rule #4: Keep the first model simple and get the infrastructure right.

Rule #5: Test the infrastructure independently from the machine learning

Rule #9: Detect problems before exporting models.

Rule #11: Give feature columns owners and documentation.

Rule #13: Choose a simple, observable and attributable metric for your first objective.
Rule #14: Starting with an interpretable model makes debugging easier.

Rule #16: Plan to launch and iterate.
Rule #24: Measure the delta between models.

Rule #27: Try to quantify observed undesirable behavior. "measure first, optimize second“

Rule #32: Re-use code between your training pipeline and your serving pipeline whenever possible.

Most of the problems are engineering problems!



https://www.inovex.de/blog/data-science-in-production/

Example: Continuous Integration
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https://pyscaffold.org/

Example: Python Package/Distribution
PyScaffold

• Easy and sane Python packaging

• Proper versioning of every commit

• Git integration, e.g. pre-commit

• Declarative configuration with setup.cfg

• Follows community standards

• Many extensions available
$> pip install pyscaffold
$> putup my_project
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Key Learnings
Data Science to Production

Data 
Science to 
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages• Dependent on your use-case, 
no one-size fits all!

• Think early on about QA
• DevOps Culture & team 

responsibility
• Choose a framework or single 

language to overcome the Two-
Language-Problem

• Embrace processes & 
automation
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Production is NOT an Afterthought!



Thank you!
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