
Bridging the Gap:

From Data Science to Production

Florian Wilhelm EuroPython 2018 @ Edinburgh, 2018-07-25

Special Interests

• Mathematical Modelling

• Recommendation Systems

• Data Science in Production

• Python Data Stack

Dr. Florian Wilhelm

Principal Data Scientist @ inovex

@FlorianWilhelm

� FlorianWilhelm

florianwilhelm.info

2

IT-project house for digital transformation:
‣ Agile Development & Management
‣ Web · UI/UX · Replatforming · Microservices
‣ Mobile · Apps · Smart Devices · Robotics
‣ Big Data & Business Intelligence Platforms
‣ Data Science · Data Products · Search · Deep Learning
‣ Data Center Automation · DevOps · Cloud · Hosting
‣ Trainings & Coachings

Using technology to inspire our
clients. And ourselves.

inovex offices in
Karlsruhe · Cologne · Munich ·
Pforzheim · Hamburg · Stuttgart.

www.inovex.de

Agenda
Many facets

Data
Science to
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages

4

Use-Case: High Level Perspective
What does your model pipeline look like?

f(...)Data
Results

Model

5

Use-Case: High Level Perspective
What is your Data Source?

Data

Variants:
• Database (PostgreSQL, C*)
• Distributed Filesystem (HDFS)
• Stream (Kafka)
• ...

How is your data accessed?

What are the frequency and recency requirements?
Batch, Near-Realtime, Realtime, Stream?

6

Use-Case: High Level Perspective
What is a model?

Model

Model includes:
• Preprocessing (cleansing, imputation, scaling)
• Construction of derived features (EMAs)
• Machine Learning Algorithm (Random Forest, ANN)
• ...

Is the input of your model raw data or pregenerated features?

Does your model have a state?

7

Use-Case: High Level Perspective
How is your result stored?

Results

Variants:

• Database (PostgreSQL, C*)

• Distributed Filesystem (HDFS)

• Stream (Kafka)

• On demand (REST API)

• ...

What are the frequency and recency requirements?
Batch, Near-Realtime, Realtime, Stream?

8

Use-Case: High Level Perspective
Our challenge

ModelData
Results

Deployment

Interface Interface

Production

9

Use-Case Evaluation

Delivery Problem Class Volume &
Velocity

Inference /
Prediction

Technical
Conditions

WebService Classification 10 GB weekly Batch Java-Stack +
Python

Stream Regression 1 GB daily Near-Realtime On-Premise

Database Recommendation 10k events/s Realtime AWS Cloud

Explainability? Stream

Characteristics of a Data Use-case

Note down your specific requirements before thinking about an architecture.
There is no one size fits all!

10

Use-Case: High Level Perspective
Right from the Start

• State the requirements of your data use-case

• Identify and check data sources

• Define interfaces with other teams/departments

• Test the whole data flow and infrastructure early on with
a dummy model

11

Many facets

Data
Science to
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages

12

It‘s an iterative Process
Quality Assurance for smooth iterations

Data

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

Deployment CRISP-DM

13

http://clean-code-developer.de/

Clean Code

Clean code is code that is easy to understand and easy to change.

Resources:
• Software Design Patterns
• SOLID Principles
• The Pragmatic Programmer
• The Software Craftsman

14

https://www.linkedin.com/pulse/5-pro-tips-data-scientists-write-good-code-jason-byrne/

https://huddle.eurostarsoftwaretesting.com/4-ways-automation-and-ci-are-changing-testing-and-development/

Continuous Integration

• Version, package
and manage your
artefacts

• Provide tests (unit,
systems, ...)

• Automize as much
as possible

• Embrace processes

15

Monitoring
KPI and Stats

• KPIs (CTR, Conversions)

• Number of requests

• Timeouts, delays

• Total number of predictions

• Runtimes

• ... All monitoring needs to be linked to
the currently running version of your
model!

16

17https://landing.google.com/sre/book/chapters/part3.html

Monitoring

Site Reliability Engineering
How Google Runs
Production Systems

@Google

Lucas Javier Bernardi | Diagnosing Machine Learning Models: https://www.youtube.com/watch?v=ZD8LA3n6YvI

Monitoring
Model Stats

Monitor the results of
model‘s predicitons

Example:
Response Distribution
Analysis

a) working model
b) confused model

a)

b)

18

A/B Tests
Feedback for your model

• Always compare your “improved“
model to the current baseline

• Allows comparing two models not
only in offline metrics but also
online metrics and KPIs.

• Also possible to adjust
hyperparameters with online
feedback, e.g. multi-armed bandit

19

A/B Tests
Technical requirements

• Versioning of your models to allow linking them to test
groups

• Deploying and serving several models at the same time
independently (needed for fast rollback anyway!)

• Tracking the results of a given model up to the point of
facing the customer

Serving

20

Many facets

Data
Science to
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages

21

Sebastian Neubauer - There should be one obvious way to bring python into production https://www.youtube.com/watch?v=hnQKsxKjCUo

Organisation of Teams
Wall of Confusion

• Code

• Tests

• Releases

• Version Control

• Continuous
Integration

• Features

Developers
• Packaging

• Deployment

• Lifecycle

• Configuration

• Security

• Monitoring

Operations

Release
v1.2.3

22

Different Cultures/Thinking
Wrong Approach!

• Especially dangerous
separation for data
products/features

• Speed and Time to Market
are important thus “not my
job“-thinking hurts

• “I made a great model“ vs.
„We made a great data
product“

23

https://en.wikipedia.org/wiki/DevOps

Organisation of Teams
Overcoming the Wall of Confusion

Continuous Delivery

Dev Ops

24

http://101.datascience.community/2016/11/28/data-scientists-data-engineers-software-engineers-the-difference-according-to-linkedin/

Heterogeneous Teams
How to bring Data Scientists into DevOps?

• Pure teams of Data Scientists
often struggle to get anything in
production

• As a minimum complement, SW
and Data Engineers are needed.
(2-3 Engineers per Data Scientist)

• Optionally a Data Product
Manager as well as an UI/UX
expert if necessary

25

http://www.full-stackagile.com/2016/02/14/team-organisation-squads-chapters-tribes-and-guilds/

Organisation around Features
Responsibility with vertical teams

• Fully autonomous teams
• End-to-end responsibility for a feature
• Works well with Agile Methods like Scrum
• Faster delivery and less politics

26

Many facets

Data
Science to
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages

27

Programming Languages
The Two Language Problem

Industry

• Java stack common
also Scala

• Strongly typed
• Emphasize on

robustness and edge
cases

• Industrial standards
for deployment

Science

• Often Python and R
• Dynamic typed since

easier to get the job
done

• Emphasize on fancy
methods and results

• Runs on my machine

28

Language Problem
Solution: Select one to rule them all!

• Having a single language reduces
the complexity of deployment

• Implementation efforts due to
abandoning one ecosystem totally

29

https://www.analyticsvidhya.com/blog/2017/09/machine-learning-models-as-apis-using-flask/

Language Problem
Solution: Python in production

• Especially easy for batch prediction use-cases

• If a web service is needed flask is a viable
option

• Scale horizontally during prediction and use a
big metal node for training a model

• Tap into the Hadoop world by using PySpark,
PyHive etc.

• Consider isolated containers using docker

30

Language Problem
Solution: PoCs in Python/R, rewrite in Java for production

• Lots of efforts and slow

• Iterations and new feature are
hard to implement

• Reproducability of bugs is
cumbersome

• Pro: Everyone gets what they
want

Worst-case Scenario

31

Language Problem
Solution: Exchangable formats

• Works great in theory
• Limited functionality and

flexibility
• No guarantee the same model

description will be interpreted
the same by two different
implementations

• Preprocessing / feature
generation not included

32

Language Problem
Solution: Frameworks

• Various language bindings allow developing
in Python/R and running on the Java stack

• Be aware if framework also covers feature
generation

• Ease of use at the cost of flexibility

33

Two Language Problem
Three concepts of dealing with it

Reimplement Frameworks Single Language

1 2 3x
34

Many facets

Data
Science to
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages

35

Deployment

Deployment heavily depends
on the chosen approach!

Still some software engineering principles
apply like Continuous Integration or even
Continuous Delivery

36

Sculley et al (2015), Hidden Technical Debt in Machine Learning Systems

Technical Debt in ML Pipelines

Deployment

37

Deployment
General principles

• Versioning & packaging, defined processes, quality
management

• Keep the development and production environment as
similar as possible

• Automation is a must, avoid human error!

• Isolated and controllable environments are a great idea,
e.g. Docker.

38

39https://developers.google.com/machine-learning/rules-of-ml/

Google‘s Best Practices for ML Engineering
Best of Google‘s rules

Rule #1: Don’t be afraid to launch a product without machine learning.

Rule #2: First, design and implement metrics
Rule #4: Keep the first model simple and get the infrastructure right.

Rule #5: Test the infrastructure independently from the machine learning

Rule #9: Detect problems before exporting models.

Rule #11: Give feature columns owners and documentation.

Rule #13: Choose a simple, observable and attributable metric for your first objective.
Rule #14: Starting with an interpretable model makes debugging easier.

Rule #16: Plan to launch and iterate.
Rule #24: Measure the delta between models.

Rule #27: Try to quantify observed undesirable behavior. "measure first, optimize second“

Rule #32: Re-use code between your training pipeline and your serving pipeline whenever possible.

Most of the problems are engineering problems!

https://www.inovex.de/blog/data-science-in-production/

Example: Continuous Integration

40

devpi

https://pyscaffold.org/

Example: Python Package/Distribution
PyScaffold

• Easy and sane Python packaging

• Proper versioning of every commit

• Git integration, e.g. pre-commit

• Declarative configuration with setup.cfg

• Follows community standards

• Many extensions available
$> pip install pyscaffold
$> putup my_project

41

Key Learnings
Data Science to Production

Data
Science to
Production

Organisation

Quality
Assurance

Deployment

Use-Case

Languages• Dependent on your use-case,
no one-size fits all!

• Think early on about QA
• DevOps Culture & team

responsibility
• Choose a framework or single

language to overcome the Two-
Language-Problem

• Embrace processes &
automation

42

Production is NOT an Afterthought!

Thank you!

Florian Wilhelm

Principal Data Scientist

inovex GmbH

Schanzenstraße 6-20
Kupferhütte 1.13
51063 Cologne, Germany

florian.wilhelm@inovex.de

