
Pipeline diagram

References

1. Original U-Net paper: https://arxiv.org/abs/1505.04597

2. Effective Use of Dilated Convolutions for Segmenting Small Object Instances in

Remote Sensing Imagery: https://arxiv.org/abs/1709.00179

3. Image augmentation Python package: https://github.com/aleju/imgaugContextual

Hourglass Networks for Segmentation and Density Estimation:

https://openreview.net/pdf?id=S1F-dpjjM

4. TernausNetV2: Fully Convolutional Network for Instance Segmentation:

https://arxiv.org/abs/1806.00844

Best practices for elegant 

We would like to thank CrowdAI and “Humanity & Inclusion” for organizing great deep

learning challenge and Paulina Prachnio        for extensive help regarding this poster.

Acknowledgements

experimentation in data science projects (case study)

Training scheme

√  What Worked

 
 

Use pretrained models!
Our multistage training procedure:

√  What Worked

 

Test time augmentation (tta). Make predictions on image rotations (90-180-
270 degrees) and flips (up-down, left-right) and take geometric mean on the
predictions.
Second level model. We tried Light-GBM and Random Forest trained on U-Net
outputs and features calculated during postprocessing.

1. Source code for our solution:                                                                           

 https://github.com/neptune-ml/open-solution-mapping-challenge

2. Solution write-up:                                                                                                 

https://github.com/neptune-ml/open-solution-mapping-

challenge/blob/master/README.md

3. Experiments and results: https://app.neptune.ml/neptune-ml/Mapping-Challenge

Our resources

 Python stack for data science:

 

 
 

 

 

Steppy-toolkit: https://github.com/neptune-ml/steppy-toolkit

Curated set of transformers that make your work with steppy faster and more

effective.

 

 Steppy: https://github.com/neptune-ml/steppy

Steppy is a lightweight, open-source, Python 3 library for fast and reproducible

experimentation. Steppy's minimal interface does not impose constraints, however,

enables clean machine learning pipeline design.

 
 

Neptune: https://neptune.ml

Tool for data scientist that facilitates clean process in data science and machine

learning projects.

Tech stack

 

× What didn't Work
Test time augmentations by using colors.
Inference on reflection-padded images was not a way to go. What worked
better (but not for the very best models) was replication padding where border
pixel value was replicated for all the padded regions. 

Preprocessing

√  What Worked
Overlay binary masks for each image is produced.
Distances to the two closest objects are calculated creating the distance map
that is used for weighing.
Size masks for each image is produced.
Dropped small masks on the edges.
We load training and validation data in batches:
using torch.utils.data.Dataset and torch.utils.data.DataLoader makes it easy
and clean. 

 

× What didn't Work
Ground truth masks are prepared by first eroding them per mask creating non
overlapping masks and only after that the distances are calculated.
Dilated small objects to increase the signal. 

Network

√  What Worked
Unet with Resnet34, Resnet101 and Resnet152 as an encoder where
Resnet101 gave us the best results. 

 

× What didn't Work
Network architecture based on dilated convolutions.

Postprocessing

√  What Worked
Distance weighted cross entropy explained in the famous U-Net paper.
Using linear combination of soft dice and distance weighted cross entropy.
Adding component weighted by building size (smaller buildings has greater
weight).

Introduction and Motivation
Results

0,943

AVERAGE PRECISION

0,954

AVERAGE RECALL

Jakub Czakon, Kamil A. Kaczmarek,
Andrzej Pyskir, Piotr Tarasiewicz 

(alphabetical order) 
Introduction and Motivation

In the course of the project, data scientists face multiple issues. Difficulties with reproducibility, lack of the

ability to prepare experiments quickly and dirty data are just three examples. Data science projects involve a lot

of experimentation and quick adoption of new ideas and technologies. Such environment makes it difficult to

keep the code clean as well as keep track of small changes that makes new experiment successful.

 

Here, we use an instance segmentation challenge - called Mapping Challenge - hosted on the crowdAI platform

to show:

1) our best practices when working in data science projects,

2) competition results.

 

Our best practices involve usage of the steppy library, which provides minimal interface for building machine

learning pipelines. Besides this, we organized our work in a transparent and open way, publishing code, tasks

and experiments results.

 

On the poster, we share our results regarding pre- and post-processing routines, network architectures and

training scheme. We also present technology stack that we use. It is a blend of well established Python

packages (like numpy and sklearn) and our own open source initiatives, that is steppy and steppy-toolkit.

 

 
 

train on a 50000 examples subset of the dataset
with lr=0.0001 and dice_weight=0.5
train on a full dataset with lr=0.0001 and dice_weight=0.5
train with smaller lr=0.00001 and dice_weight=0.5
increase dice weight to dice_weight=5.0 to make results
smoother

 

 
 

Multi-GPU training
Use very simple augmentations

Loss function

Bonus

1. If you wish to reproduce entire end-to-end solution, please check these instructions:

https://github.com/neptune-ml/open-solution-mapping-

challenge/blob/master/REPRODUCE_RESULTS.md

2. If you wish, you can grab additional compute credits for it. Check out this resource for

more details: https://github.com/neptune-ml/EuroPython2018

 

1 1

2 2

 authors affiliations:
 

1.
 

2.
 

contact info: kamil@neptune.ml

https://github.com/neptune-ml/open-solution-mapping-challenge
http://https/github.com/neptune-ml/open-solution-mapping-challenge/blob/master/README.md
https://github.com/neptune-ml/open-solution-mapping-challenge/blob/master/README.md
https://github.com/neptune-ml/steppy

