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Overview
• Introduction

• Tools and Techniques

• Data preprocessing

• Break (15 min)

• Data exploration

• Machine Learning

• Options for scaling and pipelining

• Break (15 min)

• Hands-on: Advanced tools

• Hands-on: Chaining it together

• Summary
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Introduction

• The use of Machine Learning (ML) in industry has risen to the point of 
which it is hard to ignore, but navigating to find the best practices is 
difficult

• Increasing and rapidly changing number of tools in frameworks in the 
space

• Dialing in a core set of tools and processes to handle ML in the day-
to-day is the optimal way to handle things
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Introduction: How the ML pipeline looks in practice

Data ingress Data 
Exploration

Data 
Preprocessing

Machine 
Learning

Production 
use and 
scaling

• ML Pipeline for a Data Scientist extends to many different steps with a 
wide range of tools
• Some tools range over each of the areas, but others only cover certain 

tasks
• No “perfect” tool, but choosing the right tool for the need is best 

practice
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Introduction: How the ML pipeline looks in practice
Data ingress Data 

Exploration
Data 

Preprocessing
Machine 
Learning

Production 
use and 
scaling

Intel® Distribution for Python*

Pandas

NumPy and SciPy

Scikit-Learn MPI4PY

Numexpr, Numba, and Cython

PyDAAL, daal4py, DAAL runtime*

Tensorflow

Bokeh

Jupyter and Matplotlib

Dask

XGBoost
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Tools of the Trade

• One of concepts of design the Intel® Distribution for Python* is to provide an 
accelerated and well tested + constructed collection of necessary tools for 
the Data Science process

• Each step of the process is an expansive space (and deep dive) in its own 
right; today is just a primer on them

• The tools continue to change and evolve over time, so it is best to learn the 
techniques and fundamentals when possible

• Occasionally a mix of tools in each of the spaces is required to tackle 
different parts of the problem
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Understanding Python Performance

Python performance overview

Per the creator of the language (and the language direction), the 
focus of the language, it Python was not meant to be “fast”

The focus on the language was to be expressive and quick to 
prototype

However, its usage is only picking up in numerical, scientific, and 
machine learning world

Unusually, Python and C are the perfect pair; Python has been made 
to build and access C libraries with ease

8
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Understanding Python Performance (Con’t)

General Python behavior

Python works by providing an interpreter (Cpython) which runs one’s 
Python commands from Python Bytecode (.pyc)

Pathway from one’s code is: Lexing, parsing, compiling, interpreting

Splits into function and code objects

Compiling is not ”standard”; doesn’t go down to x86 instructions, but 
instead to the Python interpreter

This format allows for very flexible bytecode, and the Python 
interpreter is the main proponent of this

9
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Understanding Python Performance (Con’t)
Why does this matter? 
(Example with numerical flow)

• The Python language is 
interpreted and has many type 
checks to make it flexible

• Each level has various 
tradeoffs; NumPy*[NumPy] value 
proposition is immediately 
seen

• For best performance, escaping 
the Python layer early is best 
method in this case

1 0

P y th o n

N u m P y

In te l®  M a th  
K e rn e l 
L ib ra ry  (M K L )

Enforces Global Interpreter Lock (GIL)
[Global Interpreter Lock] and is single 
threaded, Abstraction overhead,
No advanced types

Gets around the GIL 
(multi-thread and multi-core)
BLAS API can be the bottleneck

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware 
vectorization

*B a s ic  L in e a r  A lg e b r a  S u b p r o g r a m s (B L A S )

[C B L A S ]
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Understanding Python Performance (Con’t)
Why does this matter? 
(Python levels)

• Example with array loops

• GIL will force loops to run in a 
single threaded fashion

• NumPy dispatch helps get around 
single-threaded by using C 
functions

• C functions can then call processor 
vectorization

• Getting out of Python layer for 
performance is key

1 1

Loop (row 1) Loop 
(row 2)

Loop (... 
row n)

Loop 
(row 1) Compute append

Loop 
(row 2) Compute append

Loop (… 
row n) Compute append

For loop 
call

For loop 
call

Python-level	only	(Single-threaded)

Python	and	NumPy dispatch
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Introducing the Intel® Distribution for Python* 2018

• The Intel® Distribution for Python* was created as a response to the needs 
of Data Scientists, engineers, and those in HPC

• It utilizes advanced runtime libraries to harness the power of the Intel® 
hardware transparent to the user, so no code changes required

• Accelerates popular packages such as NumPy, Pandas, Scikit-Learn, 
Tensorflow through direct code changes linking to the runtime libraries

• Available on Anaconda and pip, through Docker, or as standalone 
installation

• Distribution is free, even for commercial use
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What’s Inside Intel® Distribution for Python*
High Perform ance Python* for Scientific Com puting, Data Analytics, M achine & Deep Learning

1Available only in Intel® Parallel Studio Com poser Edition. 

Ecosystem compatibilityGreater ProductivityFaster Performance
Prebuilt & Accelerated Packages Supports Conda & PIP

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism, 
Multithreading, Language Extensions 

Accelerated NumPy/SciPy/scikit-learn with 
Intel® MKL1 & Intel® DAAL2

Data analytics, machine learning & deep 
learning with scikit-learn, pyDAAL, Caffe*, 
Theano*
Scale with Numba* & Cython*
Includes optimized mpi4py, works with 
Dask* & PySpark*
Optimized for latest Intel® architecture

Prebuilt & optimized packages for 
numerical computing, machine/deep 
learning, HPC, & data analytics
Drop in replacement for existing Python -
No code changes required
Jupyter* notebooks, Matplotlib included
Free download & free for all uses including 
commercial deployment

Compatible & powered by Anaconda*, 
supports conda& pip
Distribution & individual optimized 
packages also available at conda& 
Anaconda.org, YUM/APT, Docker image 
on DockerHub
Optimizations upstreamed to main Python 
trunk
Priority Support through Intel® Parallel 
Studio XE

1In te l®  M a th  K e r n e l L ib r a r y

2In te l®  D a ta  A n a ly t ic s  A c c e le r a t io n  L ib r a r y
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Stand-alone installer and anaconda.org/intel

OR

Linux* Windows*

macOS*

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel
> conda install intelpython3_core
> conda install intelpython3_full

docker pull intelpython/intelpython3_full

1 4

Apt/Yum, 
pip also 
available

Installing the Intel® Distribution for Python* 2018
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From Single Core, to Multicore, to Many Core

Purpose of libraries is to 
help scaling of code over 
various types of hardware

These are some of the 
ways we’ve accelerated 
NumPy*/SciPy*
/Scikit-learn*

1 5
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Tools of the Trade (slight return)

Technologies relied upon as a starter:

• Base Language: Python
• Numerical/Scientific: NumPy, SciPy, Numba, Cython, Numexpr

• Data preprocessing and manipulation: Pandas, Dask, Intel® DAAL

• Machine Learning: Scikit-Learn, Intel® DAAL

• Distributed work: Dask, MPI4PY

• Visualization: Matplotlib, Bokeh
• IDE or work area: Jupyter Notebooks and the shell w/ IPYTHON or Python

• Code Profiler: Optional cprofile, line_profile, Intel® VTune Amplifier
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Data ingress/egress

• Getting the data in and out of Python can be simple or be the bane of one’s 
existence

• Several roadblocks: 

• Python Object size, Global Interpreter Lock (GIL), Serialization in and out of 
Python

• Formats
• csv, xlsx, hdf5, txt… 

• Movement from one to another? Mixed formats? Not on one node? 
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Data ingress/egress (con’t)

• Data movement is expensive, try to do it once and hold it there for data 
science tasks

• Load into Pandas via Jupyter notebook

• Use IPython

• Load into dask or a dask dataframe

• If in Spark, leave in cluster until ready to do the final calculation in engine

• If one must exit the application, save it to a format that can be reloaded 
easily

Copyright ©  2018, Intel Corporation. All rights reserved. 
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Preprocessing

• Preprocessing: The real 90%

• Tools of the trade

• Types of parallelism

• Distributed: Dask and MPI4PY
• Vectorization: NumPy, Numba, Numexpr, Cython
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The 90%

• Often, the majority of the time spent by data scientists or ML engineers is in 
preprocessing

• This has been made many times worse by the increasing size of datasets and 
feature complexity over the last few years

• Rather than just focus on the Training and Prediction, focus on growing task 
that precedes it as place of optimization and process improvement 

• What ways are there to get the most out of one’s preprocessing?

Copyright ©  2018, Intel Corporation. All rights reserved. 
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General Preprocessing

• General Data munging

• Pandas is the de facto standard package when working with data.  It is a 
framework that encompasses relational-style calls with series and 
dataframe primitives

• The ability to quickly thin down datasets and correct for datatypes before 
analysis and machine learning is part of the “munging” process

• Data is typically dirty, and as such this framework grants quick and easy 
methods of getting to one’s initial “clean” dataset
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General Preprocessing (con’t)

• General Data transforms

• Say for example one of the transforms to the data is expensive—a 
complicated mathematical function

• Use numba or numexpr to transform the data with vectorized funcs
that exit the GIL

• Use accelerated capabilities of the Intel® Data Analytics Acceleration 
Library (DAAL) in Scikit-learn or PyDAAL for supported preprocessing, 
i.e. Principal Component Analysis (PCA) or Singular value 
decomposition (SVD)

Copyright ©  2018, Intel Corporation. All rights reserved. 
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Tools of the Trade for Preprocessing
• Python

• Easy processing, string manipulation, i/o in a single language

• Pandas + NumPy
• Dataframe munging and simple transforms

• Scikit-Learn

• General preprocessing included with ML library

• PyDAAL, daal4py

• Pipelining and some advanced preprocessing
• Dask, MPI4PY

• Distributed work (multi-node or out of core)
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Many types of Parallelism 

Parallelism is the best way to achieve performance gains in Python
Examples: 
§ M e ssa g e  p a ssin g  

– M P I4 P y *, D ask *

§ G e n e ra l p a ra lle lism  

– m u ltip ro ce ss in g , D ask *

§ M u lti-fo rm a t p a ra lle lism  
– C y th o n *, N u m b a*

– T B B , O p e n M P  are  b a ck e n d s/ru n tim e s

– N u m e xp r*, N u m P y *, e t a l.

At lower levels: OpenMP, TBB, and MKL, DAAL calls

2 5
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Distributed computing landscape

m pi4py pySpark Dask/distributed

. . .

§ New distributed computing technologies appear almost every year
§ These technologies help Python achieve task-based parallelism and 

mitigate the issues that many people have with Python

2 6
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Two different flavors of Distributed: Dask and MPI4PY

MPI4PY*

§ Access to the MPI Library at the Python level
§ Accelerated with Intel® MPI Library

§ Best for composing things that have complex relationships 

Dask*

§ Framework that uses distributed futures to construct tasks graphs and execute via a 
scheduler

§ Specialized for computational workloads (numerical Python parallelism), and comes 
with a lot of built-in functionality

2 7
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MPI4PY

• Allows one to utilize the Message 
Passing Interface (MPI) with the 
Python language

• Designed for the parallel 
computing world

• Can handle very complex 
relationships that don’t necessarily 
fit “templates” of other distributed 
task frameworks

2 8

Im age From  M PI readthedocs
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Dask

• Easy way of accessing 
distributed task-parallelism in 
the NumPy*/SciPy* ecosystem 

• Comes with Task Graphs, 
Delayed wrappers, diagnostic 
server

• Can scale up and down quickly 
depending on needs (local 
computer, full cluster)

2 9

Im age From  Dask* docum entation
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Dask (Con’t)

• Extremely easy to integrate in places where NumPy* and SciPy* already 
exist

• Is a bit “heavier” of a solution than MPI, so use accordingly

• It does well with Task graph (i.e. Task parallel) or concurrent future-
style of async

• Works best when tasks have little intercommunication between 
workers

3 0
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Other Python-level Accelerators

Cython*

§ Optimizing static compiler

§ Similar syntax to Python
§ Can interact with NumPy* pretty well

§ Supports calling C/C++ well

Numba*

§ Just-in-time (JIT) certain functions in Python
§ Optimizes down to Low Level Virtual Machine (LLVM) code

§ Useful for code that can be instantiated once and reused

3 1
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Vectorization

• Special form of parallelism converted from an initial scalar form

• Hardware supported parallelism of SIMD which can greatly assist numerical 
pipelines

• Main two components are numexpr* and the NumPy* that use vectorization

• Intel® Distribution for Python* does this for you with changes to NumPy*, 
SciPy*, Scikit-learn* etc.

• Occasionally using the raw numexpr* might fit one’s use case

3 2
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Cython

• Can statically compile native code

• Can utilize static typing for faster 
code

• Compiles to C files

• Can pre-compile and import 
Cython code/modules

• Accessed with a package or via the 
%%cython in Jupyter notebooks

3 3

Code from  the Cython docum entation
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Caveats

From the Cython docs:

“The general recommendation is that you should only try to compile the critical 
paths in your code. If you have a piece of performance-critical computational 
code amongst some higher-level code, you may factor out the performance-
critical code in a separate function and compile the separate function with 
Numba. Letting Numba focus on that small piece of performance-critical code 
has several advantages:

§ it reduces the risk of hitting unsupported features;

§ it reduces the compilation times;
§ it allows you to evolve the higher-level code which is outside of the compiled function 

much easier.”

3 4
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NUMEXPR: the numerical Evaluator

• Multi-core, multi-threaded vectorization 
performance through Vector Math 
Library (VML), part of the Intel® MKL

• Best on large array size calculations, and 
transcendent expressions

• Callable from the Python-level

• Great for making changes that could call 
down to vectorization code without 
moving one’s code to C++ level

3 5
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NUMEXPR (Con’t)

• Easy to intermix with 
NumPy* and SciPy* code

• Requires that you 
understand the 
numerical implications of 
your code

• This was one of the 
methods we accelerated 
NumPy* and SciPy* in 
our optimized IDP 
Package

3 6
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Numba

3 7

§ Accessed by using the 
@jit decorator

§ May need special 
compilation options to 
get best out of it

§ Can cache the function 
with cache=True

§ Access vectorization with 
@vectorization decorator

Code snipit from  the Num ba
docum entation
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Parallelism and other tools: Usage Details

• Clearly understand one’s workload and algorithms before implementing 
anything with these tools

• Profile one’s code to more accurately understand where to make code 
changes

• Try different strategies and mixes of optimization to see where balance 
point is

• Documentation is you friend: many of these technologies have lots of 
gotchas and implementation quirks

3 8
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Python computation behavior

• Worst case-you 
have to make 
multiple trips 
through the top 
layer of Python

• This extra trip 
bottlenecks the 
code back to single-
threaded land as it 
goes back to 
Python

3 9

Python 
layer

NumPy or 
similar

C or Native 
Performance Library

NumPy or 
similar

Python 
layer

Python 
layer
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Intel® VTune Amplifier example

4 0
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Line-level profiling details:
§ Uses sampling profiling technique

§ Average overhead ~1.1x-1.6x (on certain benchmarks *)

Cross-platform:
§ Windows and Linux (Viewer-only on OSX)

§ Python 32- and 64-bit; 2.X, 3.X versions

4 1

Intel® VTune™ Amplifier Details

*  M e a s u r e d  a g a in s t  G r a n d  U n if ie d  P y t h o n  B e n c h m a r k

M a c h in e  s p e c s : H P  E l it e B o o k 8 5 0  G 1 ; In t e l®  C o r e ™  i5 - 4 3 0 0 U  @ 1 .9 0  G h z (4  c o r e s  w it h  H T  o n )  C P U ; 1 6  G B  R A M ; W in d o w s  8 .1  x 8 6 _ 6 4
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Profiler Summary

Profilers should be the first step when after a visual inspection does not net 
performance advantages

Without Code Profilers, one is pretty much lost without the insight provided by 
them, especially with the complexity of Python

Each of the open source profilers have different aspects they are good at (or 
that they can see), so use accordingly

Tools such as Intel VTune™ provide source, function, and hardware level 
information if the open source profilers aren’t enough

Test often, and if in doubt profile your code!

4 2
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Data Exploration

• One of the most important things to do is visualize the data you are working 
with

• This means working with it in an iterative and journalistic way, which is where 
Jupyter Notebooks come into handy

• Integrated features from Pandas and Matplotlib give easy and interactive 
access to datasets quickly within Jupyter Notebooks

• Frameworks such as Bokeh do a good job on making interactive 
visualizations for those who need to utilize it

• Saving and sharing the notebooks makes for useful collaboration technique

Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n  N o t ic e
4 6

Data Exploration: on Jupyter

• Built with the IPython Kernel and 
feature-rich plugins, this Display 
system allows for Browser-
based development of Python

• The tool of choice because of the 
iterative nature of running the 
cells and the markup options for 
documentation
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Data Exploration: on Matplotlib

• One of the original 
visualization libraries created 
for the NumPy/SciPy 
community

• Advantage of having rich 
integration with the scientific 
and numerical datatypes, as 
well as plugin integration into 
Jupyter with %matplotlib 
inline

Copyright ©  2018, Intel Corporation. All rights reserved. 
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Data Exploration

• General flows within the exploration process

• Move it into a dataframe to make it easy to explore, describe, and munge 
through the data

• If using Python, pandas is the preferred framework to do this in

• If requiring a large transform or normalization of the data, using NumPy or 
more powerful technologies (numba, numexpr) to do the mathematical 
transforms may be necessary

• Append the dataframe or replace the attribute to process further

• Evaluate quality of dataset and current data setup
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Data Exploration

5 0
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Machine Learning

• One of the most important areas of recent data analysis it the increasing use 
of ML in the space

• Availability of compute and an easy interface language to utilize it (Python) 
are the main drivers of this recent increase in use

• While it is a buzzwordy area, there is an approach to get the best lessons out 
of the area

• Today’s focus will be on Classical Machine Learning, which is the most useful 
type because of model complexity and explainability

Copyright ©  2018, Intel Corporation. All rights reserved. 
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Machine Learning Frameworks Overview

• Scikit-Learn is the most fleshed out ecosystem, with well thought out APIs, 
metric and grading tools, and supported algorithms

• XGBoost is a favorite of those who use Kaggle, as the boosted trees give 
relatively good performance out of the box but assume one already knows 
the data well enough

• Tensorflow and similar frameworks are meant for Neural Networks and 
Deep Learning, which trade model explainability for a costly but accurate 
model

• Many others in the space, but this is a great overview of the popular ones!



7/23/18

27

Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n  N o t ic e
I n t e l  I n t e r n a l  A u d i t

Understanding Scikit-Learn optimizations on
Intel® Distribution for Python*
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Speedup Analytics & Machine Learning with
Intel® Data Analytics Acceleration Library (Intel® DAAL)

5 4

§ Highly tuned functions for classical machine learning and 
analytics performance across a spectrum of Intel® 
architecture devices

§ Optimizes data ingestion together with algorithmic 
computation for highest analytics throughput

§ Includes Python*, C++, Java* APIs, and connectors to 
popular data sources including Spark* and Hadoop*

P re-p ro cessin g T ran sfo rm atio n A n alysis M o d elin g D ecis io n  M akin g

Decompression,
Filtering, 

Normalization

Aggregation,
Dimension Reduction

Summary 
Statistics

Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

V alid atio n

Hypothesis Testing
Model Errors 

What’s New in the 2018 Release
§ New Algorithms

– Classification & Regression Decision Tree and Forest
– k-NN
– Ridge Regression

§ Spark* MLlib-compatible API wrappers for easy 
substitution of faster Intel® DAAL functions

§ Improved APIs for ease of use
§ Repository distribution via YUM, APT-GET, and CondaLearn M ore: software.intel.com /daal
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Algorithms, Data Transformation & Analysis
Intel® Data Analytics Acceleration Library
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Intel® DAAL Algorithms
Machine Learning in Intel® DAAL
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Utilizing the best the advanced Intel® runtime 
libraries through Scikit-learn
• If using the Intel® Distribution of Python* variant of Scikit-learn, the 

optimizations are directly built into Sklearn for you—no code changes 
required

• This is the best way of utilizing these advanced libraries and runtimes 
without having to write one’s own code to interface with them in C

• The dynamic runtimes detect what hardware you are on and deploy the 
appropriate instructions for the CPU

• Just as easy as conda install scikit-learn –c intel

Copyright ©  2018, Intel Corporation. All rights reserved. 
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Options outside of scikit-learn for general ML

• PyDAAL – a SWIG-based wrapper around the entire DAAL library, which 
allows you to use the majority of the DAAL library for general pipelining the 
online/batch modes of supported ML models

• Daal4py – A simplified abstraction of the DAAL library, with some of the 
distributed “wiring” with MPI done under the hood (currently Linux only)

• Other frameworks built on top of NumPy and SciPy can inherit some of the 
performance benefits of the Intel® Distribution for Python*, which include 
frameworks such as Statsmodels and XGBoost
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Where ML fits into the equation

• Once preprocessing is out of the way, one is ready to pipe things into ML

• One can iteratively experiment with ML to explore models to find a best 
performant model variant

• Use the performance, accuracy, or grade of model to determine if more 
model work is needed

• Take the result of the ML and use it for prediction in some task
• Repeat, re-retrain, re-deploy! 

6 0
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Pipelining into Automation
• General flows assume most of your data wrangling happens in 

Python, as happens with most Data Scientists when they start on a 
dataset

Data Sources

Data Sources

Data Sources

O
btain D

ata

Pandas
Initial Data 
Cleaning

Transform
s

Pandas
Format and 
shaping for 

analysis

In Python

For Data 
Scientist 
use
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Pipelining into Automation (Con’t)
• Flows can change if the use cases start changing, or if 

production/deployment is necessitated

• Example below for production systems

Data Sources
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Pipelining into Automation (Con’t)
• Example below is for multiple user dataset(s), with both Data 

Scientists, Sales, and Business Analysts accessing data at the same 
time
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Things you’ll need for the exercises

• Linux, Mac, or Windows (some tools not available on Mac or Windows)

• Docker container variant is Linux

• Intel® Distribution for Python*

• Conda or Miniconda
• ~8GB of RAM

• Minimum Core i5 or greater Intel® Processor

• Internet access and Git
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Advanced tools: Repo

• https://github.com/IntelPython/workshop

• Conda command to create it: 

• conda create -n idp2018 python=3.6.2 intelpython3_full -c intel

• Then conda install line_profiler
• conda install dask, conda install dask distributed

• We’ll be running a few items from this workshop

• NumPy, Numba, Numexpr, Dask examples
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The Black Scholes* Algorithm

A financial options trading formula used for investment price estimates

The formula calculates the price of a European ‘put’ and ‘call’ options

Is a partial differential equation (PDE) which describes the price of the option 
over time

Is a great example of some of the optimization problems that exist in real-
world 

6 8

https://github.com/IntelPython/workshop
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Black-Scholes* (Con’t)

Algorithm is a PDE in general 
form

Solvable for Call and Put 
options

Goal is to solve for Call and Put 
options
Putting it into Python is next 
step

6 9
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Black-Scholes* (Con’t)

Code generates the intermediates 
of the formula, and gives the 
corresponding call/put

Generates for as many options that 
exist (nopt)

Calculates final call/put at the last 
two lines

7 0
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One form of optimization: NumPy*-specific math calls 

Exercise: In this example, replace the functions from the math library with 
NumPy* equivalents:

§ log

§ exp

§ erf
§ invsqrt

Re-run the profiling to see what you can find

§ Total time?

§ A change in what the bottlenecks were?

7 1
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Black Sholes*: NumPy* Variant (vectorized)

• Loop removal helps by allowing use of NumPy’s native array capabilities

• Individually going through loops, even with NumPy* arrays is VERY 
expensive

• Loop-parallel has a few options, and this is one of them: vectorization!

• On line_profiler, how many times did the code hits changes in this new 
version?

7 2
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Black Scholes*: NUMEXPR*

• By interacting directly with numexpr*, you are calling out to the vectorization 
capabilities without going through the NumPy* layer

• By compressing the entire vectorization command of one’s calculation in 
one expression, the vectorization engine can do significantly more 

• This is one of the ways we did some of our optimization work on NumPy* 
itself for the Intel® Distribution for Python*!

7 3
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Black Scholes*: NUMBA*

• Exercise: Using the Numba example, test with same methods: timeit, 
cProfile, line_profiler

• What do you notice about the functions being imported?

• Why do you think it uses the “nopython=True” option?

• What works? What doesn’t work? 

7 4
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Black Scholes*: NUMBA*

• This example uses Just-In-Time(JIT) compiling to achieve performance 
gains

• Because of this, profiling can become VERY difficult

• The first run is slow because you pay for the compilation time, but the 
function is cached afterwards

• Many times this require writing in pure Python before utilizing Numba

7 5
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Black Scholes*: DASK* (NumPy* mods)

• What is different in this example?  What does it change?

• Using this example, test with same methods: timeit, cProfile, line_profiler

• How does the diagnostic server help?

• What works? What doesn’t work? 

7 6
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Vtune Analysis of Black Scholes* with NUMPY*

7 7
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Vtune Analysis of Black Scholes* with NUMEXPR

7 8
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Vtune Analysis of Black Scholes* with NUMBA*

7 9
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Vtune Analysis of Black Scholes* with DASK

8 0
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Why Review these? I thought it was about ML?

• The reason for these items first is to lay the foundation of how the Data 
Scientist workflow is correctly dealt with: with 90% as preprocessing, it is 
VERY important to know how to use these tools

• Next we will look at some other tools in the ML space, and play with 
datasets as well

• A lot of what goes on in daily work means the fastest possible iterations 
when sifting through data, which the tools here can help with—and IDP 
makes it even faster

• Optimizations throughout the ecosystem used by Data Scientists is one of 
the main tenants of the Intel® Distribution for Python*!

8 2
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Chaining all the skills together

• For the applied portion of this tutorial, we are going to take a look at one of my very 
old Github projects: pyworkout-toolkit
• Go here and download the repo

• https://github.com/triskadecaepyon/pyworkout-toolkit

• pip install pyworkout-toolkit or conda install -c triskadecaepyon pyworkout=0.0.1
• I might *eventually* get it on conda-forge J

• Conda install bokeh

• Pip install or conda install graphviz (you might need the actual binary too)

• http://graphviz.org/download/
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Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance 
tests, such as SYSmarkand MobileMark, are measured using specific computer systems, components, software, operations and functions. Any 
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other products.  For more complete 
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Additional Information

Intel® Distribution for Python* Documentation
– https://software.intel.com/en-us/intel-distribution-for-python-

support/documentation

cProfile:

§ https://docs.python.org/3.5/library/profile.html

Line_profiler:

§ https://github.com/rkern/line_profiler

8 5

https://software.intel.com/en-us/intel-distribution-for-python-support/documentation
https://docs.python.org/3.5/library/profile.html
https://github.com/rkern/line_profiler

