Overview

• Introduction
• Tools and Techniques
• Data preprocessing
• Break (15 min)
• Data exploration
• Machine Learning
• Options for scaling and pipelining
• Break (15 min)
• Hands-on: Advanced tools
• Hands-on: Chaining it together
• Summary
Introduction

• The use of Machine Learning (ML) in industry has risen to the point of which it is hard to ignore, but navigating to find the best practices is difficult

• Increasing and rapidly changing number of tools in frameworks in the space

• Dialing in a core set of tools and processes to handle ML in the day-to-day is the optimal way to handle things

Introduction: How the ML pipeline looks in practice

• ML Pipeline for a Data Scientist extends to many different steps with a wide range of tools
• Some tools range over each of the areas, but others only cover certain tasks
• No “perfect” tool, but choosing the right tool for the need is best practice
Tools of the Trade

- One of concepts of design the Intel® Distribution for Python* is to provide an accelerated and well tested + constructed collection of necessary tools for the Data Science process
- Each step of the process is an expansive space (and deep dive) in its own right; today is just a primer on them
- The tools continue to change and evolve over time, so it is best to learn the techniques and fundamentals when possible
- Occasionally a mix of tools in each of the spaces is required to tackle different parts of the problem
Understanding Python Performance

Python performance overview

Per the creator of the language (and the language direction), the focus of the language, it Python was not meant to be “fast”

The focus on the language was to be expressive and quick to prototype

However, its usage is only picking up in numerical, scientific, and machine learning world

Unusually, Python and C are the perfect pair; Python has been made to build and access C libraries with ease
Understanding Python Performance (Con't)

General Python behavior

Python works by providing an interpreter (Cpython) which runs one's Python commands from *Python Bytecode (.pyc)*

Pathway from one's code is: Lexing, parsing, compiling, interpreting

Splits into function and code objects

Compiling is not "standard"; doesn't go down to x86 instructions, but instead to the Python interpreter

This format allows for very *flexible* bytecode, and the Python interpreter is the main proponent of this

Understanding Python Performance (Con't)

Why does this matter?
(Example with numerical flow)

- The Python language is interpreted and has many type checks to make it flexible
- Each level has various tradeoffs; *NumPy*[NumPy] value proposition is immediately seen
- For best performance, escaping the Python layer early is best method in this case

- Enforces *Global Interpreter Lock (GIL)* [Global Interpreter Lock] and is single threaded, Abstraction overhead, No advanced types
- Gets around the GIL (multi-thread and multi-core)
- BLAS API can be the bottleneck
 - Basic Linear Algebra Subprograms (BLAS) [CBLAS]
- Gets around BLAS API bottleneck
 - Much stricter typing
 - Fastest performance level
 - *Dispatches* to hardware vectorization
Understanding Python Performance (Con’t)

Why does this matter? (Python levels)

- Example with array loops
- GIL will force loops to run in a single threaded fashion
- NumPy dispatch helps get around single-threaded by using C functions
- C functions can then call processor vectorization
- Getting out of Python layer for performance is key

Python-level only (Single-threaded)

For loop call

- Loop (row 1)
- Loop (row 2)
- Loop (… row n)

Python and NumPy dispatch

For loop call

- Loop (row 1) Compute append
- Loop (row 2) Compute append
- Loop (… row n) Compute append

Introducing the Intel® Distribution for Python* 2018

- The Intel® Distribution for Python* was created as a response to the needs of Data Scientists, engineers, and those in HPC
- It utilizes advanced runtime libraries to harness the power of the Intel® hardware transparent to the user, so no code changes required
- Accelerates popular packages such as NumPy, Pandas, Scikit-Learn, TensorFlow through direct code changes linking to the runtime libraries
- Available on Anaconda and pip, through Docker, or as standalone installation
- Distribution is free, even for commercial use
What’s Inside Intel® Distribution for Python*

High Performance Python for Scientific Computing, Data Analytics, Machine & Deep Learning

<table>
<thead>
<tr>
<th>FASTER PERFORMANCE</th>
<th>GREATER PRODUCTIVITY</th>
<th>ECOSYSTEM COMPATIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Libraries, Parallelism, Multithreading, Language Extensions</td>
<td>Prebuilt & Accelerated Packages</td>
<td>Supports Conda & PIP</td>
</tr>
<tr>
<td>Accelerated NumPy/SciPy/sklearn with Intel® MKL & Intel® DAAL</td>
<td>Prebuilt & optimized packages for numerical computing, machine/deep learning, HPC, & data analytics</td>
<td>Compatible & powered by Anaconda*, supports conda & pip</td>
</tr>
<tr>
<td>Data analytics, machine learning & deep learning with sklearn, pyDAAL, Caffe*, Theano*</td>
<td>Drop in replacement for existing Python - No code changes required</td>
<td>Distribution & individual optimized packages also available at conda & Anaconda.org, YUM/APT, Docker image on DockerHub</td>
</tr>
<tr>
<td>Scale with Numba* & Cython*</td>
<td>Jupyter® notebooks, Matplotlib included</td>
<td>Optimizations upstreamed to main Python trunk</td>
</tr>
<tr>
<td>Includes optimized mpi4py, works with Dask* & PySpark*</td>
<td>Free download & free for all uses including commercial deployment</td>
<td>Priority Support through Intel® Parallel Studio XE</td>
</tr>
<tr>
<td>Optimized for latest Intel® architecture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intel® Architecture Platforms

- Operating System: Windows*, Linux*, MacOS*

Installing the Intel® Distribution for Python* 2018

Stand-alone installer and anaconda.org/intel

OR

- conda config --add channels intel
- conda install intelpython3_core
- conda install intelpython3_full

docker pull intelpython/intelpython3_full

Apt/Yum, pip also available
From Single Core, to Multicore, to Many Core

Purpose of libraries is to help scaling of code over various types of hardware

These are some of the ways we've accelerated NumPy*/SciPy*/Scikit-learn*

Tools of the Trade (slight return)

Technologies relied upon as a starter:

- **Base Language:** Python
- **Numerical/Scientific:** NumPy, SciPy, Numba, Cython, Numexpr
- **Data preprocessing and manipulation:** Pandas, Dask, Intel® DAAL
- **Machine Learning:** Scikit-Learn, Intel® DAAL
- **Distributed work:** Dask, MPI4PY
- **Visualization:** Matplotlib, Bokeh
- **IDE or work area:** Jupyter Notebooks and the shell w/ IPYTHON or Python
- **Code Profiler:** Optional cprofile, line_profile, Intel® VTune Amplifier
Data ingress/egress

• Getting the data in and out of Python can be simple or be the bane of one's existence

• Several roadblocks:
 • Python Object size, Global Interpreter Lock (GIL), Serialization in and out of Python

• Formats
 • csv, xlsx, hdf5, txt...

• Movement from one to another? Mixed formats? Not on one node?
Data ingress/egress (con't)

• Data movement is expensive, try to do it once and hold it there for data science tasks
 • Load into Pandas via Jupyter notebook
 • Use IPython
 • Load into dask or a dask dataframe
 • If in Spark, leave in cluster until ready to do the final calculation in engine
 • If one must exit the application, save it to a format that can be reloaded easily

Preprocessing

• Preprocessing: The real 90%
• Tools of the trade
• Types of parallelism
• Distributed: Dask and MPI4PY
• Vectorization: NumPy, Numba, Numexpr, Cython
The 90%

- Often, the majority of the time spent by data scientists or ML engineers is in preprocessing
- This has been made many times worse by the increasing size of datasets and feature complexity over the last few years
- Rather than just focus on the Training and Prediction, focus on growing task that precedes it as place of optimization and process improvement
- What ways are there to get the most out of one’s preprocessing?

General Preprocessing

- General Data munging
 - Pandas is the de facto standard package when working with data. It is a framework that encompasses relational-style calls with series and dataframe primitives
 - The ability to quickly thin down datasets and correct for datatypes before analysis and machine learning is part of the “munging” process
 - Data is typically dirty, and as such this framework grants quick and easy methods of getting to one's initial “clean” dataset
General Preprocessing (con’t)

- General Data transforms
 - Say for example one of the transforms to the data is expensive—a complicated mathematical function
 - Use `numba` or `numexpr` to transform the data with vectorized functions that exit the GIL
 - Use accelerated capabilities of the Intel® Data Analytics Acceleration Library (DAAL) in Scikit-learn or PyDAAL for supported preprocessing, i.e. Principal Component Analysis (PCA) or Singular value decomposition (SVD)

Tools of the Trade for Preprocessing

- Python
 - Easy processing, string manipulation, i/o in a single language
- Pandas + NumPy
 - Dataframe munging and simple transforms
- Scikit-Learn
 - General preprocessing included with ML library
- PyDAAL, daal4py
 - Pipelining and some advanced preprocessing
- Dask, MPI4PY
 - Distributed work (multi-node or out of core)
Many types of Parallelism

Parallelism is the best way to achieve performance gains in Python

Examples:
- **Message passing**
 - MPI4Py*, Dask*
- **General parallelism**
 - multiprocessing, Dask*
- **Multi-format parallelism**
 - Cython*, Numba*
 - TBB, OpenMP are backends/runtimes
 - Numexpr*, NumPy*, et al.

At lower levels: OpenMP, TBB, and MKL, DAAL calls

Distributed computing landscape

- mpi4py
- pySpark
- Dask/distributed

- New distributed computing technologies appear almost every year
- These technologies help Python achieve task-based parallelism and mitigate the issues that many people have with Python
Two different flavors of Distributed: Dask and MPI4PY

MPI4PY
- Access to the MPI Library at the Python level
- Accelerated with Intel® MPI Library
- Best for composing things that have complex relationships

Dask
- Framework that uses distributed futures to construct tasks graphs and execute via a scheduler
- Specialized for computational workloads (numerical Python parallelism), and comes with a lot of built-in functionality

MPI4PY
- Allows one to utilize the Message Passing Interface (MPI) with the Python language
- Designed for the parallel computing world
- Can handle very complex relationships that don’t necessarily fit “templates” of other distributed task frameworks

```python
from mpi4py import MPI
import numpy

def matvec(comm, A, x):
    m = A.shape[0]  # local rows
    p = comm.Get_size()
    xg = numpy.zeros(m*p, dtype='d')
    comm.Allgather([x, MPI.DOUBLE], [xg, MPI.DOUBLE])
    y = numpy.dot(A, xg)
    return y
```

Image From MPI readthedocs
Dask

- Easy way of accessing distributed task-parallelism in the NumPy*/SciPy* ecosystem
- Comes with Task Graphs, Delayed wrappers, diagnostic server
- Can scale up and down quickly depending on needs (local computer, full cluster)

Dask (Con’t)

- Extremely easy to integrate in places where NumPy* and SciPy* already exist
- Is a bit “heavier” of a solution than MPI, so use accordingly
- It does well with Task graph (i.e. Task parallel) or concurrent future-style of async
- Works best when tasks have little intercommunication between workers
Other Python-level Accelerators

Cython
- Optimizing static compiler
- Similar syntax to Python
- Can interact with NumPy* pretty well
- Supports calling C/C++ well

Numba
- Just-in-time (JIT) certain functions in Python
- Optimizes down to Low Level Virtual Machine (LLVM) code
- Useful for code that can be instantiated once and reused

Vectorization

- Special form of parallelism converted from an initial scalar form
- Hardware supported parallelism of SIMD which can greatly assist numerical pipelines
- Main two components are numexpr* and the NumPy* that use vectorization
- Intel® Distribution for Python* does this for you with changes to NumPy*, SciPy*, Scikit-learn* etc.
- Occasionally using the raw numexpr* might fit one's use case
Cython

- Can statically compile native code
- Can utilize static typing for faster code
- Compiles to C files
- Can pre-compile and import Cython code/modules
- Accessed with a package or via the %%cython in Jupyter notebooks

From the Cython docs:

“The general recommendation is that you should only try to compile the critical paths in your code. If you have a piece of performance-critical computational code amongst some higher-level code, you may factor out the performance-critical code in a separate function and compile the separate function with Numba. Letting Numba focus on that small piece of performance-critical code has several advantages:

- it reduces the risk of hitting unsupported features;
- it reduces the compilation times;
- it allows you to evolve the higher-level code which is outside of the compiled function much easier.”
NUMEXPR: the numerical Evaluator

- Multi-core, multi-threaded vectorization performance through Vector Math Library (VML), part of the Intel® MKL
- Best on large array size calculations, and transcendent expressions
- Callable from the Python-level
- Great for making changes that could call down to vectorization code without moving one's code to C++ level

NUMEXPR (Con’t)

- Easy to intermix with NumPy* and SciPy* code
- Requires that you understand the numerical implications of your code
- This was one of the methods we accelerated NumPy* and SciPy* in our optimized IDP Package
Numba

- Accessed by using the @jit decorator
- May need special compilation options to get best out of it
- Can cache the function with cache=True
- Access vectorization with @vectorization decorator

Code snippet from the Numba documentation

Parallelism and other tools: Usage Details

- Clearly understand one's workload and algorithms before implementing anything with these tools
- Profile one's code to more accurately understand where to make code changes
- Try different strategies and mixes of optimization to see where balance point is
- Documentation is your friend: many of these technologies have lots of gotchas and implementation quirks
Python computation behavior

- Worst case—you have to make multiple trips through the top layer of Python
- This extra trip bottlenecks the code back to single-threaded land as it goes back to Python

Intel® VTune Amplifier example
Intel® VTune™ Amplifier Details

Line-level profiling details:
- Uses sampling profiling technique
- Average overhead ~1.1x-1.6x (on certain benchmarks *)

Cross-platform:
- Windows and Linux (Viewer-only on OSX)
- Python 32- and 64-bit; 2.X, 3.X versions

* Measured against Grand Unified Python Benchmark

Machine spec: HP EliteBook 850 G1; Intel® Core™ i5-4300U @ 1.90 Ghz (4 cores with HT on) CPU; 16 GB RAM; Windows 8.1 x64

Profiler Summary

Profilers should be the first step when after a visual inspection does not net performance advantages

Without Code Profilers, one is pretty much lost without the insight provided by them, especially with the complexity of Python

Each of the open source profilers have different aspects they are good at (or that they can see), so use accordingly

Tools such as Intel VTune™ provide source, function, and hardware level information if the open source profilers aren't enough

Test often, and if in doubt profile your code!
BREAK

DATA EXPLORATION
Data Exploration

• One of the most important things to do is visualize the data you are working with

• This means working with it in an iterative and journalistic way, which is where Jupyter Notebooks come into handy

• Integrated features from Pandas and Matplotlib give easy and interactive access to datasets quickly within Jupyter Notebooks

• Frameworks such as Bokeh do a good job on making interactive visualizations for those who need to utilize it

• Saving and sharing the notebooks makes for useful collaboration technique

Data Exploration: on Jupyter

• Built with the IPython Kernel and feature-rich plugins, this Display system allows for Browser-based development of Python

• The tool of choice because of the iterative nature of running the cells and the markup options for documentation
Data Exploration: on Matplotlib

- One of the original visualization libraries created for the NumPy/SciPy community
- Advantage of having rich integration with the scientific and numerical datatypes, as well as plugin integration into Jupyter with `%matplotlib inline`

Data Exploration

- General flows within the exploration process
 - Move it into a dataframe to make it easy to explore, describe, and munge through the data
 - If using Python, pandas is the preferred framework to do this in
 - If requiring a large transform or normalization of the data, using NumPy or more powerful technologies (numba, numexpr) to do the mathematical transforms may be necessary
- Append the dataframe or replace the attribute to process further
- Evaluate quality of dataset and current data setup
Data Exploration
Machine Learning

- One of the most important areas of recent data analysis is the increasing use of ML in the space
- Availability of compute and an easy interface language to utilize it (Python) are the main drivers of this recent increase in use
- While it is a buzzwordy area, there is an approach to get the best lessons out of the area
- Today’s focus will be on Classical Machine Learning, which is the most useful type because of model complexity and explainability

Machine Learning Frameworks Overview

- **Scikit-Learn** is the most fleshed out ecosystem, with well thought out APIs, metric and grading tools, and supported algorithms
- **XGBoost** is a favorite of those who use Kaggle, as the boosted trees give relatively good performance out of the box but assume one already knows the data well enough
- **Tensorflow** and similar frameworks are meant for Neural Networks and Deep Learning, which trade model explainability for a costly but accurate model
- Many others in the space, but this is a great overview of the popular ones!
Understanding Scikit-Learn optimizations on Intel® Distribution for Python*

![Intel Distribution for Python* libraries](image)

Intel® Performance Libraries
- Numpy*
- Scipy*
- Scikit-learn*
- pyDAAL
- Pandas*
- Mpi4py*

Optimization Notice

Intel® Internal Audit

- Copyright © 2018, Intel Corporation. All rights reserved.
- *Other names and brands may be claimed as the property of others.

Speedup Analytics & Machine Learning with Intel® Data Analytics Acceleration Library (Intel® DAAL)

- Highly tuned functions for classical machine learning and analytics performance across a spectrum of Intel® architecture devices
- Optimizes data ingestion together with algorithmic computation for highest analytics throughput
- Includes Python*, C++, Java* APIs, and connectors to popular data sources including Spark* and Hadoop*

What's New in the 2018 Release

- New Algorithms
 - Classification & Regression Decision Tree and Forest
 - k-NN
 - Ridge Regression
- Spark* MLlib-compatible API wrappers for easy substitution of faster Intel® DAAL functions
- Improved APIs for ease of use
- Repository distribution via YUM, APT-GET, and Conda

Learn More: software.intel.com/daal

Pre-processing
- Decompression, Filtering, Normalization

Transformation
- Aggregation, Dimension Reduction

Analysis
- Summary Statistics
- Clustering, etc.

Modeling
- Machine Learning (Training)
- Simulation

Validation
- Hypothesis Testing
- Model Errors

Decision Making
- Forecasting
- Decision Trees, etc.
Algorithms, Data Transformation & Analysis
Intel® Data Analytics Acceleration Library

Basic Statistics for Datasets
- Low Order Moments
- Quantiles
- Order Statistics

Correlation & Dependence
- Cosine Distance
- Correlation Distance
- Variance-Covariance Matrix

Matrix Factorizations
- SVD
- QR
- Cholesky

Dimensionality Reduction
- PCA
- Association Rule Mining (Apriori)
- Optimization Solvers (SGD, AdaGrad, LBFGS)

Outlier Detection
- Univariate
- Multivariate
- Math Functions (exp, log...)

Intel® DAAL Algorithms
Machine Learning in Intel® DAAL

Regression
- Linear Regression
- Ridge Regression
- Decision Forest
- Decision Tree
- Boosting (Ada, Brown, Logit)
- Naïve Bayes
- k-NN
- Support Vector Machine

Unsupervised Learning
- K-Means Clustering
- EM for GMM
- Collaborative filtering
- Alternating Least Squares
Utilizing the best the advanced Intel® runtime libraries through Scikit-learn

- If using the Intel® Distribution of Python* variant of Scikit-learn, the optimizations are directly built into Sklearn for you—no code changes required
- This is the best way of utilizing these advanced libraries and runtimes without having to write one’s own code to interface with them in C
- The dynamic runtimes detect what hardware you are on and deploy the appropriate instructions for the CPU
- Just as easy as conda install scikit-learn --c intel

Options outside of scikit-learn for general ML

- **PyDAAL** – a SWIG-based wrapper around the entire DAAL library, which allows you to use the majority of the DAAL library for general pipelining the online/batch modes of supported ML models
- **Daal4py** – A simplified abstraction of the DAAL library, with some of the distributed “wiring” with MPI done under the hood (*currently Linux only*)
- Other frameworks built on top of NumPy and SciPy can inherit some of the performance benefits of the Intel® Distribution for Python*, which include frameworks such as Statsmodels and XGBoost
Where ML fits into the equation

• Once preprocessing is out of the way, one is ready to pipe things into ML
• One can iteratively experiment with ML to explore models to find a best performant model variant
• Use the performance, accuracy, or grade of model to determine if more model work is needed
• Take the result of the ML and use it for prediction in some task
• Repeat, re-retrain, re-deploy!
Pipelining into Automation

- General flows assume most of your data wrangling happens in Python, as happens with most Data Scientists when they start on a dataset

1. Data Sources
2. Obtain Data
3. Pandas Initial Data Cleaning
4. Pandas Transforms
5. Format and shaping for analysis
6. For Data Scientist use

Pipelining into Automation (Con't)

- Flows can change if the use cases start changing, or if production/deployment is necessitated
- Example below for production systems

1. Data Sources
2. Obtain Data
3. Pandas Initial Data Cleaning
4. Pandas Transforms
5. Export to new dataset
6. Production system
7. Analytics Platform, or production ML system
Pipelining into Automation (Con’t)

- Example below is for multiple user dataset(s), with both Data Scientists, Sales, and Business Analysts accessing data at the same time.

Data Sources ➔ Obtained Data ➔ Transformations ➔ Storage Database ➔ Production System

In Python:

Pandas, Dask, etc ➔ Initial Data Cleaning ➔ Production System

- Data Scientists and ML users

Production System:

- Analytics Platform, or production ML system

- Data Scientists and ML users

Data Sources ➔ CRM Platform ➔ Sales and Business Analysts

BREAK
Things you’ll need for the exercises

- Linux, Mac, or Windows (some tools not available on Mac or Windows)
 - *Docker container variant is Linux*
- Intel® Distribution for Python*
- Conda or Miniconda
- ~8GB of RAM
- Minimum Core i5 or greater Intel® Processor
- Internet access and Git
Advanced tools: Repo

- https://github.com/IntelPython/workshop
- Conda command to create it:
 - `conda create -n idp2018 python=3.6.2 intelpython3_full -c intel`
 - Then `conda install line_profiler`
 - `conda install dask, conda install dask distributed`
- *We’ll be running a few items from this workshop*
- *NumPy, Numba, Numexpr, Dask examples*

The Black Scholes* Algorithm

A financial options trading formula used for investment price estimates
The formula calculates the price of a *European ‘put’* and ‘*call’* options
Is a partial differential equation (PDE) which describes the *price of the option over time*
Is a great example of some of the optimization problems that exist in real-world
Black-Scholes* (Con't)

Algorithm is a PDE in general form
Solvable for Call and Put options
Goal is to solve for Call and Put options
Putting it into Python is next step

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0
\]

\[
C(S_t, t) = N(d_1)S_t - N(d_2)K e^{-r(T-t)}
\]

\[
d_1 = \frac{1}{\sigma \sqrt{T-t}} \left[\ln \left(\frac{S_t}{K} \right) + \left(r + \frac{\sigma^2}{2} \right) (T-t) \right]
\]

The price of a corresponding put option based on put-call parity is:

\[
P(S_t, t) = Ke^{-r(T-t)} - S_t + C(S_t, t)
\]

\[
= N(-d_2)Ke^{-r(T-t)} - N(-d_1)S_t
\]

*Optimization Notice

Black-Scholes* (Con't)

Code generates the intermediates of the formula, and gives the corresponding call/put
Generates for as many options that exist (nopt)
Calculates final call/put at the last two lines

```python
from math import log, sqrt, exp, erf
import numpy as np

invsqrt = lambda x: 1.0/sqrt(x)

def black_scholes(nopt, price, strike, t, rate, vol, call, put):
    mr = -rate
    sig_sig_two = vol * vol + 2
    for i in range(nopt):
        P = float(price[i])
        S = strike[i]
        T = t[i]
        a = log(P / S)
        b = T * mr
        z = T * sig_sig_two
        c = 0.25 * z
        y = invsqrt(z)
        w1 = (a - b + c) * y
        w2 = (a - b - c) * y
        d1 = 0.5 + 0.5 * erf(w1)
        d2 = 0.5 + 0.5 * erf(w2)
        Se = exp(b) * S
        call[i] = P * d1 - Se * d2
        put[i] = call[i] - P * Se
```
One form of optimization: NumPy*-specific math calls

Exercise: In this example, replace the functions from the math library with NumPy* equivalents:

- log
- exp
- erf
- invsqrt

Re-run the profiling to see what you can find

- Total time?
- A change in what the bottlenecks were?

Black Sholes*: NumPy* Variant (vectorized)

- Loop removal helps by allowing use of NumPy’s native array capabilities
- Individually going through loops, even with NumPy* arrays is VERY expensive
- Loop-parallel has a few options, and this is one of them: vectorization!
- On line_profiler, how many times did the code hits changes in this new version?
**Black Scholes*: NUMEXPR*

- By interacting directly with numexpr*, you are calling out to the vectorization capabilities without going through the NumPy* layer
- By compressing the entire vectorization command of one's calculation in one expression, the vectorization engine can do significantly more
- This is one of the ways we did some of our optimization work on NumPy* itself for the Intel® Distribution for Python*!

**Black Scholes*: NUMBA*

- **Exercise**: Using the Numba example, test with same methods: timeit, cProfile, line_profiler
- What do you notice about the functions being imported?
- Why do you think it uses the "nopython=True" option?
- What works? What doesn't work?
Black Scholes*: NUMBA*

- This example uses Just-In-Time (JIT) compiling to achieve performance gains
- Because of this, profiling can become VERY difficult
- The first run is slow because you pay for the compilation time, but the function is cached afterwards
- Many times this require writing in pure Python before utilizing Numba

Black Scholes*: DASK* (NumPy* mods)

- What is different in this example? What does it change?
- Using this example, test with same methods: timeit, cProfile, line_profile
- How does the diagnostic server help?
- What works? What doesn't work?
Vtune Analysis of Black Scholes* with NUMPY*

Vtune Analysis of Black Scholes* with NUMEXPR
Vtune Analysis of Black Scholes* with NUMBA*

Vtune Analysis of Black Scholes* with DASK
Why Review these? I thought it was about ML?

- The reason for these items first is to lay the foundation of how the Data Scientist workflow is correctly dealt with: with 90% as preprocessing, it is VERY important to know how to use these tools.
- Next we will look at some other tools in the ML space, and play with datasets as well.
- A lot of what goes on in daily work means the fastest possible iterations when sifting through data, which the tools here can help with—and IDP makes it even faster.
- Optimizations throughout the ecosystem used by Data Scientists is one of the main tenants of the Intel® Distribution for Python*!
Chaining all the skills together

• For the applied portion of this tutorial, we are going to take a look at one of my very old Github projects: pyworkout-toolkit
 • Go here and download the repo
 • https://github.com/triskadecaepyon/pyworkout-toolkit
 • pip install pyworkout-toolkit or conda install -c triskadecaepyon pyworkout=0.0.1
 • I might *eventually* get it on conda-forge 😊
 • Conda install bokeh
 • Pip install or conda install graphviz (you might need the actual binary too)
 • http://graphviz.org/download/

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
Additional Information

Intel® Distribution for Python* Documentation

cProfile:
- https://docs.python.org/3.5/library/profile.html

Line_profiler:
- https://github.com/rkern/line_profiler