
7/23/18

1

David Liu, Python Technical Consultant Engineer

Intel Corporation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
2

Overview
• Introduction

• Tools and Techniques

• Data preprocessing

• Break (15 min)

• Data exploration

• Machine Learning

• Options for scaling and pipelining

• Break (15 min)

• Hands-on: Advanced tools

• Hands-on: Chaining it together

• Summary

7/23/18

2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
3

Introduction

• The use of Machine Learning (ML) in industry has risen to the point of
which it is hard to ignore, but navigating to find the best practices is
difficult

• Increasing and rapidly changing number of tools in frameworks in the
space

• Dialing in a core set of tools and processes to handle ML in the day-
to-day is the optimal way to handle things

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
4

Introduction: How the ML pipeline looks in practice

Data ingress Data
Exploration

Data
Preprocessing

Machine
Learning

Production
use and
scaling

• ML Pipeline for a Data Scientist extends to many different steps with a
wide range of tools
• Some tools range over each of the areas, but others only cover certain

tasks
• No “perfect” tool, but choosing the right tool for the need is best

practice

7/23/18

3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
5

Introduction: How the ML pipeline looks in practice
Data ingress Data

Exploration
Data

Preprocessing
Machine
Learning

Production
use and
scaling

Intel® Distribution for Python*

Pandas

NumPy and SciPy

Scikit-Learn MPI4PY

Numexpr, Numba, and Cython

PyDAAL, daal4py, DAAL runtime*

Tensorflow

Bokeh

Jupyter and Matplotlib

Dask

XGBoost

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
6

Tools of the Trade

• One of concepts of design the Intel® Distribution for Python* is to provide an
accelerated and well tested + constructed collection of necessary tools for
the Data Science process

• Each step of the process is an expansive space (and deep dive) in its own
right; today is just a primer on them

• The tools continue to change and evolve over time, so it is best to learn the
techniques and fundamentals when possible

• Occasionally a mix of tools in each of the spaces is required to tackle
different parts of the problem

7/23/18

4

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Understanding Python Performance

Python performance overview

Per the creator of the language (and the language direction), the
focus of the language, it Python was not meant to be “fast”

The focus on the language was to be expressive and quick to
prototype

However, its usage is only picking up in numerical, scientific, and
machine learning world

Unusually, Python and C are the perfect pair; Python has been made
to build and access C libraries with ease

8

7/23/18

5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Understanding Python Performance (Con’t)

General Python behavior

Python works by providing an interpreter (Cpython) which runs one’s
Python commands from Python Bytecode (.pyc)

Pathway from one’s code is: Lexing, parsing, compiling, interpreting

Splits into function and code objects

Compiling is not ”standard”; doesn’t go down to x86 instructions, but
instead to the Python interpreter

This format allows for very flexible bytecode, and the Python
interpreter is the main proponent of this

9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Understanding Python Performance (Con’t)
Why does this matter?
(Example with numerical flow)

• The Python language is
interpreted and has many type
checks to make it flexible

• Each level has various
tradeoffs; NumPy*[NumPy] value
proposition is immediately
seen

• For best performance, escaping
the Python layer early is best
method in this case

1 0

P y th o n

N u m P y

In te l® M a th
K e rn e l
L ib ra ry (M K L)

Enforces Global Interpreter Lock (GIL)
[Global Interpreter Lock] and is single
threaded, Abstraction overhead,
No advanced types

Gets around the GIL
(multi-thread and multi-core)
BLAS API can be the bottleneck

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware
vectorization

*B a s ic L in e a r A lg e b r a S u b p r o g r a m s (B L A S)

[C B L A S]

7/23/18

6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Understanding Python Performance (Con’t)
Why does this matter?
(Python levels)

• Example with array loops

• GIL will force loops to run in a
single threaded fashion

• NumPy dispatch helps get around
single-threaded by using C
functions

• C functions can then call processor
vectorization

• Getting out of Python layer for
performance is key

1 1

Loop (row 1) Loop
(row 2)

Loop (...
row n)

Loop
(row 1) Compute append

Loop
(row 2) Compute append

Loop (…
row n) Compute append

For loop
call

For loop
call

Python-level	only	(Single-threaded)

Python	and	NumPy dispatch

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
1 2

Introducing the Intel® Distribution for Python* 2018

• The Intel® Distribution for Python* was created as a response to the needs
of Data Scientists, engineers, and those in HPC

• It utilizes advanced runtime libraries to harness the power of the Intel®
hardware transparent to the user, so no code changes required

• Accelerates popular packages such as NumPy, Pandas, Scikit-Learn,
Tensorflow through direct code changes linking to the runtime libraries

• Available on Anaconda and pip, through Docker, or as standalone
installation

• Distribution is free, even for commercial use

7/23/18

7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
1 3

What’s Inside Intel® Distribution for Python*
High Perform ance Python* for Scientific Com puting, Data Analytics, M achine & Deep Learning

1Available only in Intel® Parallel Studio Com poser Edition.

Ecosystem compatibilityGreater ProductivityFaster Performance
Prebuilt & Accelerated Packages Supports Conda & PIP

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism,
Multithreading, Language Extensions

Accelerated NumPy/SciPy/scikit-learn with
Intel® MKL1 & Intel® DAAL2

Data analytics, machine learning & deep
learning with scikit-learn, pyDAAL, Caffe*,
Theano*
Scale with Numba* & Cython*
Includes optimized mpi4py, works with
Dask* & PySpark*
Optimized for latest Intel® architecture

Prebuilt & optimized packages for
numerical computing, machine/deep
learning, HPC, & data analytics
Drop in replacement for existing Python -
No code changes required
Jupyter* notebooks, Matplotlib included
Free download & free for all uses including
commercial deployment

Compatible & powered by Anaconda*,
supports conda& pip
Distribution & individual optimized
packages also available at conda&
Anaconda.org, YUM/APT, Docker image
on DockerHub
Optimizations upstreamed to main Python
trunk
Priority Support through Intel® Parallel
Studio XE

1In te l® M a th K e r n e l L ib r a r y

2In te l® D a ta A n a ly t ic s A c c e le r a t io n L ib r a r y

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Stand-alone installer and anaconda.org/intel

OR

Linux* Windows*

macOS*

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel
> conda install intelpython3_core
> conda install intelpython3_full

docker pull intelpython/intelpython3_full

1 4

Apt/Yum,
pip also
available

Installing the Intel® Distribution for Python* 2018

7/23/18

8

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

From Single Core, to Multicore, to Many Core

Purpose of libraries is to
help scaling of code over
various types of hardware

These are some of the
ways we’ve accelerated
NumPy*/SciPy*
/Scikit-learn*

1 5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
1 6

Tools of the Trade (slight return)

Technologies relied upon as a starter:

• Base Language: Python
• Numerical/Scientific: NumPy, SciPy, Numba, Cython, Numexpr

• Data preprocessing and manipulation: Pandas, Dask, Intel® DAAL

• Machine Learning: Scikit-Learn, Intel® DAAL

• Distributed work: Dask, MPI4PY

• Visualization: Matplotlib, Bokeh
• IDE or work area: Jupyter Notebooks and the shell w/ IPYTHON or Python

• Code Profiler: Optional cprofile, line_profile, Intel® VTune Amplifier

7/23/18

9

1 7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
1 8

Data ingress/egress

• Getting the data in and out of Python can be simple or be the bane of one’s
existence

• Several roadblocks:

• Python Object size, Global Interpreter Lock (GIL), Serialization in and out of
Python

• Formats
• csv, xlsx, hdf5, txt…

• Movement from one to another? Mixed formats? Not on one node?

7/23/18

10

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
1 9

Data ingress/egress (con’t)

• Data movement is expensive, try to do it once and hold it there for data
science tasks

• Load into Pandas via Jupyter notebook

• Use IPython

• Load into dask or a dask dataframe

• If in Spark, leave in cluster until ready to do the final calculation in engine

• If one must exit the application, save it to a format that can be reloaded
easily

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Preprocessing

• Preprocessing: The real 90%

• Tools of the trade

• Types of parallelism

• Distributed: Dask and MPI4PY
• Vectorization: NumPy, Numba, Numexpr, Cython

7/23/18

11

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
2 1

The 90%

• Often, the majority of the time spent by data scientists or ML engineers is in
preprocessing

• This has been made many times worse by the increasing size of datasets and
feature complexity over the last few years

• Rather than just focus on the Training and Prediction, focus on growing task
that precedes it as place of optimization and process improvement

• What ways are there to get the most out of one’s preprocessing?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
2 2

General Preprocessing

• General Data munging

• Pandas is the de facto standard package when working with data. It is a
framework that encompasses relational-style calls with series and
dataframe primitives

• The ability to quickly thin down datasets and correct for datatypes before
analysis and machine learning is part of the “munging” process

• Data is typically dirty, and as such this framework grants quick and easy
methods of getting to one’s initial “clean” dataset

7/23/18

12

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
2 3

General Preprocessing (con’t)

• General Data transforms

• Say for example one of the transforms to the data is expensive—a
complicated mathematical function

• Use numba or numexpr to transform the data with vectorized funcs
that exit the GIL

• Use accelerated capabilities of the Intel® Data Analytics Acceleration
Library (DAAL) in Scikit-learn or PyDAAL for supported preprocessing,
i.e. Principal Component Analysis (PCA) or Singular value
decomposition (SVD)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
2 4

Tools of the Trade for Preprocessing
• Python

• Easy processing, string manipulation, i/o in a single language

• Pandas + NumPy
• Dataframe munging and simple transforms

• Scikit-Learn

• General preprocessing included with ML library

• PyDAAL, daal4py

• Pipelining and some advanced preprocessing
• Dask, MPI4PY

• Distributed work (multi-node or out of core)

7/23/18

13

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Many types of Parallelism

Parallelism is the best way to achieve performance gains in Python
Examples:
§ M e ssa g e p a ssin g

– M P I4 P y *, D ask *

§ G e n e ra l p a ra lle lism

– m u ltip ro ce ss in g , D ask *

§ M u lti-fo rm a t p a ra lle lism
– C y th o n *, N u m b a*

– T B B , O p e n M P are b a ck e n d s/ru n tim e s

– N u m e xp r*, N u m P y *, e t a l.

At lower levels: OpenMP, TBB, and MKL, DAAL calls

2 5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Distributed computing landscape

m pi4py pySpark Dask/distributed

. . .

§ New distributed computing technologies appear almost every year
§ These technologies help Python achieve task-based parallelism and

mitigate the issues that many people have with Python

2 6

7/23/18

14

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Two different flavors of Distributed: Dask and MPI4PY

MPI4PY*

§ Access to the MPI Library at the Python level
§ Accelerated with Intel® MPI Library

§ Best for composing things that have complex relationships

Dask*

§ Framework that uses distributed futures to construct tasks graphs and execute via a
scheduler

§ Specialized for computational workloads (numerical Python parallelism), and comes
with a lot of built-in functionality

2 7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

MPI4PY

• Allows one to utilize the Message
Passing Interface (MPI) with the
Python language

• Designed for the parallel
computing world

• Can handle very complex
relationships that don’t necessarily
fit “templates” of other distributed
task frameworks

2 8

Im age From M PI readthedocs

7/23/18

15

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Dask

• Easy way of accessing
distributed task-parallelism in
the NumPy*/SciPy* ecosystem

• Comes with Task Graphs,
Delayed wrappers, diagnostic
server

• Can scale up and down quickly
depending on needs (local
computer, full cluster)

2 9

Im age From Dask* docum entation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Dask (Con’t)

• Extremely easy to integrate in places where NumPy* and SciPy* already
exist

• Is a bit “heavier” of a solution than MPI, so use accordingly

• It does well with Task graph (i.e. Task parallel) or concurrent future-
style of async

• Works best when tasks have little intercommunication between
workers

3 0

7/23/18

16

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Other Python-level Accelerators

Cython*

§ Optimizing static compiler

§ Similar syntax to Python
§ Can interact with NumPy* pretty well

§ Supports calling C/C++ well

Numba*

§ Just-in-time (JIT) certain functions in Python
§ Optimizes down to Low Level Virtual Machine (LLVM) code

§ Useful for code that can be instantiated once and reused

3 1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Vectorization

• Special form of parallelism converted from an initial scalar form

• Hardware supported parallelism of SIMD which can greatly assist numerical
pipelines

• Main two components are numexpr* and the NumPy* that use vectorization

• Intel® Distribution for Python* does this for you with changes to NumPy*,
SciPy*, Scikit-learn* etc.

• Occasionally using the raw numexpr* might fit one’s use case

3 2

7/23/18

17

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Cython

• Can statically compile native code

• Can utilize static typing for faster
code

• Compiles to C files

• Can pre-compile and import
Cython code/modules

• Accessed with a package or via the
%%cython in Jupyter notebooks

3 3

Code from the Cython docum entation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Caveats

From the Cython docs:

“The general recommendation is that you should only try to compile the critical
paths in your code. If you have a piece of performance-critical computational
code amongst some higher-level code, you may factor out the performance-
critical code in a separate function and compile the separate function with
Numba. Letting Numba focus on that small piece of performance-critical code
has several advantages:

§ it reduces the risk of hitting unsupported features;

§ it reduces the compilation times;
§ it allows you to evolve the higher-level code which is outside of the compiled function

much easier.”

3 4

7/23/18

18

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

NUMEXPR: the numerical Evaluator

• Multi-core, multi-threaded vectorization
performance through Vector Math
Library (VML), part of the Intel® MKL

• Best on large array size calculations, and
transcendent expressions

• Callable from the Python-level

• Great for making changes that could call
down to vectorization code without
moving one’s code to C++ level

3 5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

NUMEXPR (Con’t)

• Easy to intermix with
NumPy* and SciPy* code

• Requires that you
understand the
numerical implications of
your code

• This was one of the
methods we accelerated
NumPy* and SciPy* in
our optimized IDP
Package

3 6

7/23/18

19

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Numba

3 7

§ Accessed by using the
@jit decorator

§ May need special
compilation options to
get best out of it

§ Can cache the function
with cache=True

§ Access vectorization with
@vectorization decorator

Code snipit from the Num ba
docum entation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Parallelism and other tools: Usage Details

• Clearly understand one’s workload and algorithms before implementing
anything with these tools

• Profile one’s code to more accurately understand where to make code
changes

• Try different strategies and mixes of optimization to see where balance
point is

• Documentation is you friend: many of these technologies have lots of
gotchas and implementation quirks

3 8

7/23/18

20

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Python computation behavior

• Worst case-you
have to make
multiple trips
through the top
layer of Python

• This extra trip
bottlenecks the
code back to single-
threaded land as it
goes back to
Python

3 9

Python
layer

NumPy or
similar

C or Native
Performance Library

NumPy or
similar

Python
layer

Python
layer

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Intel® VTune Amplifier example

4 0

7/23/18

21

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Line-level profiling details:
§ Uses sampling profiling technique

§ Average overhead ~1.1x-1.6x (on certain benchmarks *)

Cross-platform:
§ Windows and Linux (Viewer-only on OSX)

§ Python 32- and 64-bit; 2.X, 3.X versions

4 1

Intel® VTune™ Amplifier Details

* M e a s u r e d a g a in s t G r a n d U n if ie d P y t h o n B e n c h m a r k

M a c h in e s p e c s : H P E l it e B o o k 8 5 0 G 1 ; In t e l® C o r e ™ i5 - 4 3 0 0 U @ 1 .9 0 G h z (4 c o r e s w it h H T o n) C P U ; 1 6 G B R A M ; W in d o w s 8 .1 x 8 6 _ 6 4

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Profiler Summary

Profilers should be the first step when after a visual inspection does not net
performance advantages

Without Code Profilers, one is pretty much lost without the insight provided by
them, especially with the complexity of Python

Each of the open source profilers have different aspects they are good at (or
that they can see), so use accordingly

Tools such as Intel VTune™ provide source, function, and hardware level
information if the open source profilers aren’t enough

Test often, and if in doubt profile your code!

4 2

7/23/18

22

4 3

4 4

7/23/18

23

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Data Exploration

• One of the most important things to do is visualize the data you are working
with

• This means working with it in an iterative and journalistic way, which is where
Jupyter Notebooks come into handy

• Integrated features from Pandas and Matplotlib give easy and interactive
access to datasets quickly within Jupyter Notebooks

• Frameworks such as Bokeh do a good job on making interactive
visualizations for those who need to utilize it

• Saving and sharing the notebooks makes for useful collaboration technique

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
4 6

Data Exploration: on Jupyter

• Built with the IPython Kernel and
feature-rich plugins, this Display
system allows for Browser-
based development of Python

• The tool of choice because of the
iterative nature of running the
cells and the markup options for
documentation

7/23/18

24

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
4 7

Data Exploration: on Matplotlib

• One of the original
visualization libraries created
for the NumPy/SciPy
community

• Advantage of having rich
integration with the scientific
and numerical datatypes, as
well as plugin integration into
Jupyter with %matplotlib
inline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
4 8

Data Exploration

• General flows within the exploration process

• Move it into a dataframe to make it easy to explore, describe, and munge
through the data

• If using Python, pandas is the preferred framework to do this in

• If requiring a large transform or normalization of the data, using NumPy or
more powerful technologies (numba, numexpr) to do the mathematical
transforms may be necessary

• Append the dataframe or replace the attribute to process further

• Evaluate quality of dataset and current data setup

7/23/18

25

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
4 9

Data Exploration

5 0

7/23/18

26

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Machine Learning

• One of the most important areas of recent data analysis it the increasing use
of ML in the space

• Availability of compute and an easy interface language to utilize it (Python)
are the main drivers of this recent increase in use

• While it is a buzzwordy area, there is an approach to get the best lessons out
of the area

• Today’s focus will be on Classical Machine Learning, which is the most useful
type because of model complexity and explainability

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
5 2

Machine Learning Frameworks Overview

• Scikit-Learn is the most fleshed out ecosystem, with well thought out APIs,
metric and grading tools, and supported algorithms

• XGBoost is a favorite of those who use Kaggle, as the boosted trees give
relatively good performance out of the box but assume one already knows
the data well enough

• Tensorflow and similar frameworks are meant for Neural Networks and
Deep Learning, which trade model explainability for a costly but accurate
model

• Many others in the space, but this is a great overview of the popular ones!

7/23/18

27

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
I n t e l I n t e r n a l A u d i t

Understanding Scikit-Learn optimizations on
Intel® Distribution for Python*

Intel®
DAALIntel®

IPP
Intel®
MPI

Library

Intel®
TBB

Intel®
MKL

Scipy*
Scikit-
learn* Pandas*Numpy*

…
Intel®
Distribution
for Python*

Intel®
Performance
Libraries

Mpi4py*pyDAAL

5 3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Speedup Analytics & Machine Learning with
Intel® Data Analytics Acceleration Library (Intel® DAAL)

5 4

§ Highly tuned functions for classical machine learning and
analytics performance across a spectrum of Intel®
architecture devices

§ Optimizes data ingestion together with algorithmic
computation for highest analytics throughput

§ Includes Python*, C++, Java* APIs, and connectors to
popular data sources including Spark* and Hadoop*

P re-p ro cessin g T ran sfo rm atio n A n alysis M o d elin g D ecis io n M akin g

Decompression,
Filtering,

Normalization

Aggregation,
Dimension Reduction

Summary
Statistics

Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

V alid atio n

Hypothesis Testing
Model Errors

What’s New in the 2018 Release
§ New Algorithms

– Classification & Regression Decision Tree and Forest
– k-NN
– Ridge Regression

§ Spark* MLlib-compatible API wrappers for easy
substitution of faster Intel® DAAL functions

§ Improved APIs for ease of use
§ Repository distribution via YUM, APT-GET, and CondaLearn M ore: software.intel.com /daal

7/23/18

28

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
I n t e l I n t e r n a l A u d i t 5 5

Algorithms, Data Transformation & Analysis
Intel® Data Analytics Acceleration Library

Basic
Statistics for

Datasets

Low
Order

Moments

Variance-
Covariance

Matrix

Correlation
&

Dependence

Cosine
Distance

Correlation
Distance

Matrix
Factorizations

SVD

QR

Cholesky

Dimensionality
Reduction

PCA

Outlier
Detection

Association
Rule Mining

(Apriori)

Univariate

Multivariate

A lg o r ith m s s u p p o r t in g b a tc h , o n lin e a n d / o r d is tr ib u te d p r o c e s s in g

Quantiles

Order
Statistics

Optimization
Solvers (SGD,

AdaGrad, lBFGS)
Math Functions

(exp, log,…)
A lg o r ith m s s u p p o r t in g b a tc h p r o c e s s in g

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
I n t e l I n t e r n a l A u d i t

Intel® DAAL Algorithms
Machine Learning in Intel® DAAL

Supervised
learning

Regression Linear
Regression

Classificatio
n

Weak
learner

Boosting
(Ada, Brown, Logit)

Naïve
Bayes

k-NN

Support Vector Machine

Unsupervised
learning

K-M eans
Clustering

EM for
GMM

Collaborative
filtering

Alternating
Least Squares

Ridge
Regression

Decision Forest

A lg o rith m s su p p o rtin g b a tch , o n lin e a n d /o r d istrib u te d p ro ce ssin g

A lg o rith m s su p p o rtin g b a tch p ro ce ssin g

Neural networks

Decision Tree

5 6

7/23/18

29

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
I n t e l I n t e r n a l A u d i t 5 7

Utilizing the best the advanced Intel® runtime
libraries through Scikit-learn
• If using the Intel® Distribution of Python* variant of Scikit-learn, the

optimizations are directly built into Sklearn for you—no code changes
required

• This is the best way of utilizing these advanced libraries and runtimes
without having to write one’s own code to interface with them in C

• The dynamic runtimes detect what hardware you are on and deploy the
appropriate instructions for the CPU

• Just as easy as conda install scikit-learn –c intel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
I n t e l I n t e r n a l A u d i t 5 8

Options outside of scikit-learn for general ML

• PyDAAL – a SWIG-based wrapper around the entire DAAL library, which
allows you to use the majority of the DAAL library for general pipelining the
online/batch modes of supported ML models

• Daal4py – A simplified abstraction of the DAAL library, with some of the
distributed “wiring” with MPI done under the hood (currently Linux only)

• Other frameworks built on top of NumPy and SciPy can inherit some of the
performance benefits of the Intel® Distribution for Python*, which include
frameworks such as Statsmodels and XGBoost

7/23/18

30

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
I n t e l I n t e r n a l A u d i t 5 9

Where ML fits into the equation

• Once preprocessing is out of the way, one is ready to pipe things into ML

• One can iteratively experiment with ML to explore models to find a best
performant model variant

• Use the performance, accuracy, or grade of model to determine if more
model work is needed

• Take the result of the ML and use it for prediction in some task
• Repeat, re-retrain, re-deploy!

6 0

7/23/18

31

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
6 1

Pipelining into Automation
• General flows assume most of your data wrangling happens in

Python, as happens with most Data Scientists when they start on a
dataset

Data Sources

Data Sources

Data Sources

O
btain D

ata

Pandas
Initial Data
Cleaning

Transform
s

Pandas
Format and
shaping for

analysis

In Python

For Data
Scientist
use

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
6 2

Pipelining into Automation (Con’t)
• Flows can change if the use cases start changing, or if

production/deployment is necessitated

• Example below for production systems

Data Sources

Data Sources

Data Sources

O
btain D

ata

Pandas
Initial Data
Cleaning

Transform
s

In Python

Export to new

dataset

Analytics
Platform , or
production
M L system

Production system

7/23/18

32

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
6 3

Pipelining into Automation (Con’t)
• Example below is for multiple user dataset(s), with both Data

Scientists, Sales, and Business Analysts accessing data at the same
time

Data Sources

Data Sources

Data Sources

O
btain D

ata

Pandas,
Dask, etc

Initial Data
Cleaning

Transform
s

In Python

Storage D
atabase Analytics

Platform , or
production
M L system

Production system

Production system

T
ran

sfo
rm

s

CRM
Platform

Data Scientists and
ML users

Sales and Business
Analysts

6 4

7/23/18

33

6 5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
6 6

Things you’ll need for the exercises

• Linux, Mac, or Windows (some tools not available on Mac or Windows)

• Docker container variant is Linux

• Intel® Distribution for Python*

• Conda or Miniconda
• ~8GB of RAM

• Minimum Core i5 or greater Intel® Processor

• Internet access and Git

7/23/18

34

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
6 7

Advanced tools: Repo

• https://github.com/IntelPython/workshop

• Conda command to create it:

• conda create -n idp2018 python=3.6.2 intelpython3_full -c intel

• Then conda install line_profiler
• conda install dask, conda install dask distributed

• We’ll be running a few items from this workshop

• NumPy, Numba, Numexpr, Dask examples

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

The Black Scholes* Algorithm

A financial options trading formula used for investment price estimates

The formula calculates the price of a European ‘put’ and ‘call’ options

Is a partial differential equation (PDE) which describes the price of the option
over time

Is a great example of some of the optimization problems that exist in real-
world

6 8

https://github.com/IntelPython/workshop

7/23/18

35

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black-Scholes* (Con’t)

Algorithm is a PDE in general
form

Solvable for Call and Put
options

Goal is to solve for Call and Put
options
Putting it into Python is next
step

6 9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black-Scholes* (Con’t)

Code generates the intermediates
of the formula, and gives the
corresponding call/put

Generates for as many options that
exist (nopt)

Calculates final call/put at the last
two lines

7 0

7/23/18

36

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

One form of optimization: NumPy*-specific math calls

Exercise: In this example, replace the functions from the math library with
NumPy* equivalents:

§ log

§ exp

§ erf
§ invsqrt

Re-run the profiling to see what you can find

§ Total time?

§ A change in what the bottlenecks were?

7 1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black Sholes*: NumPy* Variant (vectorized)

• Loop removal helps by allowing use of NumPy’s native array capabilities

• Individually going through loops, even with NumPy* arrays is VERY
expensive

• Loop-parallel has a few options, and this is one of them: vectorization!

• On line_profiler, how many times did the code hits changes in this new
version?

7 2

7/23/18

37

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black Scholes*: NUMEXPR*

• By interacting directly with numexpr*, you are calling out to the vectorization
capabilities without going through the NumPy* layer

• By compressing the entire vectorization command of one’s calculation in
one expression, the vectorization engine can do significantly more

• This is one of the ways we did some of our optimization work on NumPy*
itself for the Intel® Distribution for Python*!

7 3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black Scholes*: NUMBA*

• Exercise: Using the Numba example, test with same methods: timeit,
cProfile, line_profiler

• What do you notice about the functions being imported?

• Why do you think it uses the “nopython=True” option?

• What works? What doesn’t work?

7 4

7/23/18

38

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black Scholes*: NUMBA*

• This example uses Just-In-Time(JIT) compiling to achieve performance
gains

• Because of this, profiling can become VERY difficult

• The first run is slow because you pay for the compilation time, but the
function is cached afterwards

• Many times this require writing in pure Python before utilizing Numba

7 5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Black Scholes*: DASK* (NumPy* mods)

• What is different in this example? What does it change?

• Using this example, test with same methods: timeit, cProfile, line_profiler

• How does the diagnostic server help?

• What works? What doesn’t work?

7 6

7/23/18

39

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Vtune Analysis of Black Scholes* with NUMPY*

7 7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Vtune Analysis of Black Scholes* with NUMEXPR

7 8

7/23/18

40

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Vtune Analysis of Black Scholes* with NUMBA*

7 9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Vtune Analysis of Black Scholes* with DASK

8 0

7/23/18

41

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e
8 1

Why Review these? I thought it was about ML?

• The reason for these items first is to lay the foundation of how the Data
Scientist workflow is correctly dealt with: with 90% as preprocessing, it is
VERY important to know how to use these tools

• Next we will look at some other tools in the ML space, and play with
datasets as well

• A lot of what goes on in daily work means the fastest possible iterations
when sifting through data, which the tools here can help with—and IDP
makes it even faster

• Optimizations throughout the ecosystem used by Data Scientists is one of
the main tenants of the Intel® Distribution for Python*!

8 2

7/23/18

42

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Chaining all the skills together

• For the applied portion of this tutorial, we are going to take a look at one of my very
old Github projects: pyworkout-toolkit
• Go here and download the repo

• https://github.com/triskadecaepyon/pyworkout-toolkit

• pip install pyworkout-toolkit or conda install -c triskadecaepyon pyworkout=0.0.1
• I might *eventually* get it on conda-forge J

• Conda install bokeh

• Pip install or conda install graphviz (you might need the actual binary too)

• http://graphviz.org/download/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Legal Disclaimer & Optimization Notice

O p t i m i z a t i o n N o t i c e

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more informationregarding the
specific instruction sets covered by this notice.

Notice revision #20110804

8 4

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmarkand MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://github.com/triskadecaepyon/pyworkout-toolkit
https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

7/23/18

43

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

O p tim iz a t io n N o t ic e

Additional Information

Intel® Distribution for Python* Documentation
– https://software.intel.com/en-us/intel-distribution-for-python-

support/documentation

cProfile:

§ https://docs.python.org/3.5/library/profile.html

Line_profiler:

§ https://github.com/rkern/line_profiler

8 5

https://software.intel.com/en-us/intel-distribution-for-python-support/documentation
https://docs.python.org/3.5/library/profile.html
https://github.com/rkern/line_profiler

