
Asyncio in production

Hrafn Eiriksson

Why you no asyncio?!

Why you no asyncio?!

Asynchronous programming is different

Why you no asyncio?!

asyncio is relatively new

Why you no asyncio?!

Converting existing Python apps to use asyncio is not simple

Why you no asyncio?!

The community has built multiple concurrency libraries

Why you no asyncio?!

Asynchronous programming is not always what you want

My goal today
1. Discuss why I went all in on asyncio (and try to convince you to do the same)

2. Migrating to asyncio and the inevitable issues you run into
3. Asyncio in production: A before/after comparison

Not my goal today

4. An introduction into asyncio

Part 1: Why bother with asyncio?

My software already works!

A bit of background...

A bit of background...

Credit: https://www.destroyallsoftware.com/talks/wat

A bit of background...

How we (typically) scale our services

Load
balancer

Clients

Instance 1

Instance 2

Instance 3

Instance 4

Instance x

Gunicorn
master

Gunicorn
worker 1

Gunicorn
worker 2

Gunicorn
worker 3

Gunicorn
worker y

... ...

flow

TLDR

What makes asyncio so attractive is that it’s:

- Explicit
- Part of the language

Part 2: Migrating to asyncio

The asyncio ecosystem

Previously people relied on monkey patching

Now it seems to be becoming quite mature:

- Dozens of web frameworks (aiohttp, Sanic, Quart)
- Loads of database drivers (asyncpg, aiomysql, aioredis, etc)
- ...and way more [1]

[1] https://github.com/python/asyncio/wiki/ThirdParty

A microservice migration
Based on a true story

Asyncio web frameworks

aiohttp Sanic

Flask compatible

HTTP 2.0

Mature

WebSockets
support

Flask-like

Fast

An example: Quart
Flask Quart [2]

[2] https://gitlab.com/pgjones/quart

aiohttp

A migration example: Sentry

Then problems hit...

Issues with asyncio
- A lot of new concepts to wrap your head around
- async/await everywhere
- Debugging asyncio code can be problematic
- Be wary of running synchronous code in async functions

TLDR

1. Map out your dependencies to see if asyncio-compatible versions exist
2. Experiment with asyncio versions of your dependencies
3. Watch out for asyncio gotchas
4. Profit!

Part 3: asyncio in production

Before/after comparison

Before: Flask + psycopg2 + eventlet

After: aiohttp + asyncpg + uvloop

VS

Methodology
- Use wrk (https://github.com/wg/wrk) to do HTTP benchmarking.
- Ran each configuration of the benchmark:

- For 30 seconds
- 10 times
- Using a variable number of open HTTP connections
- Noted the median and the 25%/75% latency for each run
- 10 seconds of sleep between runs

https://github.com/wg/wrk

Local comparison: Simple ping

R
eq

ue
st

s/
se

c

Local comparison: Database access

R
eq

ue
st

s/
se

c

In production comparison

R
eq

ue
st

s/
se

c

Conclusion

So is asyncio worth the effort?

Thank you!

