

All You Need is PandasAll You Need is Pandas
Unexpected Success Stories

Dimiter Naydenov

@dimitern

1 . 1

About meAbout me
from Bulgaria.Sofia import Dimiter.Naydenov

tags: Python, Emacs, Go, Ubuntu, Diving, Sci-Fi
company: develated

1 . 2

Pandas?Pandas?

2 . 1

import pandas as pdimport pandas as pd

Open source (BSD-licensed) Python library
Created by Wes McKinney in 2008
High-performance, easy-to-use data structures
Great API for data analysis, built on top of
Well documented:

NumPy
pandas.pydata.org/pandas-doc/stable/

2 . 2

http://www.numpy.org/
http://pandas.pydata.org/pandas-docs/stable/

Pandas: Personal FavouritesPandas: Personal Favourites
Easy to install, very few requirements
Fast as NumPy, yet more �exible and nicer to use
Reads/writes data in the most common formats
Works seamlessly with for plottingmatplotlib

3 . 1

https://matplotlib.org/

Pandas: Personal Pain PointsPandas: Personal Pain Points
Good documentation, but not a lot of tutorials
Confusingly many ways to do the same thing
Arcane indexing, even without MultiIndex
Sane defaults, but can be "too smart" in some cases

4 . 1

SVG Mail Labels GeneratorSVG Mail Labels Generator
Goal: Send personalized mail, labeled in sender's handwriting.

5 . 1

RequirementsRequirements
1. Acquire samples of users' handwriting as SVG �les
2. Extract individual letter/symbol SVGs from each sample page
3. Compose arbitrary word SVGs using the letters
4. Generate mail label SVGs from those words

5 . 2

User 1 User 2

Handwritten samples
(SVG)

Tablet + Stylus

Acquiring Handwriting SamplesAcquiring Handwriting Samples

5 . 3

Example InputExample Input

Excerpt of a user's SVG sample page.

5 . 4

Example OutputExample Output

Generated SVG mail label for another user.

5 . 5

DateFrame Creation

Classification

Labeling

Word Building

Letter Extraction

Parsing

ProcessingProcessing

6 . 1

ParsingParsing
Problem: Extracting pen strokes from SVG XML

Solution: I found which provides:

Classes: Path (base), Line, CubicBezier, QuadraticBezier
API for path intersections, bounding boxes, transformations
Reading and writing SVG lists paths from/to SVG �les

svgpathtools

import svgpathtools as spt

def parse_svg(filename):
 paths, attrs = spt.svg2paths(filename)
 # paths: list of Path instances
 # attrs: list of dicts with XML attributes
 return paths, attrs

6 . 2

https://github.com/mathandy/svgpathtools

DataFrame CreationDataFrame Creation

orgidx xmin ymin xmax ymax path

0 x0 y0 X0 Y0 p1

…

n-1 xn-1 yn-1 Xn-1 Yn-1 pn-1

import pandas as pd

def gen_records(svg_paths):
 for i, path in enumerate(svg_paths):
 xmin, xmax, ymin, ymax = path.bbox()
 yield dict(org_idx=i, xmin=xmin, ymin=ymin,
 xmax=xmax, ymax=ymax, path=path)

def load_paths(filename):
 paths, _ = parse_svg(filename)
 return pd.DataFrame.from_records(gen_records(paths))

6 . 3

Letter ExtractionLetter Extraction
Problem: Compare each stroke with all nearby strokes and merge as letters

Solution: DateFrame iteration and �ltering (over multiple passes)
def merge_letters(df, merged, unmerged):
 merged = set([])
 unmerged = set(df.loc['org_idx'].tolist())

 df = merge_dots(df, merged, unmerged)
 df = merge_overlapping(df, merged, unmerged)
 df = merge_crossing_below(df, merged, unmerged)
 df = merge_crossing_above(df, merged, unmerged)
 df = merge_crossing_before(df, merged, unmerged)
 df = merge_crossing_after(df, merged, unmerged)
 return df, merged, unmerged

6 . 4

Merging Fully Overlapping PathsMerging Fully Overlapping Paths
def merge_overlapping(df, merged, unmerged):
 """Merges paths whose bboxes overlap completely."""

 for path in df.itertuples():
 candidates = df[(
 (df.xmin < path.xmin) &
 (df.xmax > path.xmax) &
 (df.ymin < path.ymin) &
 (df.ymax > path.ymax) &
)]

 df = merge_candidates(df, path.Index, candidates.org_idx.values, merged, unmerged)

 return update_data_frame(df)

6 . 5

Updating After Each PassUpdating After Each Pass
def update_data_frame(df):
 """Calculates additional properties of each path."""

 return (df.assign(
 width=lambda df: df.xmax - df.xmin,
 height=lambda df: df.ymax - df.ymin).assign(
 half_width=lambda df: df.width / 2,
 half_height=lambda df: df.height / 2,
 area=lambda df: df.width * df.height,
 aspect=lambda df: df.width / df.height)
 .sort_values(['ymin', 'ymax', 'xmin', 'xmax']))

6 . 6

Classi�cationClassi�cation
Manual process (deliberately)
External tool (no Pandas :/)
Loads merged unclassi�ed letters
Shows them one by one and allows adjustment
Produces labeled letter / symbol SVG �les

6 . 7

Word BuildingWord Building
Input: any word without spaces (e.g. testing)
Selection: for each letter, picks a labeled variant
Horizontal composition: merges selected variants with variable kerning
Vertical alignment: according to the running baseline of the word
Output: single word SVG �le

Example (showing letter bounding boxes and baseline)

6 . 8

LabelingLabeling
Input: Excel �le with mail addresses
Structure: one row per label, one column per line
Parsing: as simple as pd.read_excel()
Generation: builds words with variable spacing (for each column)
Alignment: with variable leading (vertical line spacing)

6 . 9

What I Learned: What I Learned: All You Need is Pandas!All You Need is Pandas!
Pandas is great for any table-based data processing
Learn just a few features (�ltering, iteration) and use them
Understand indexing and the power of MultiIndex
Dealing with CSV or Excel I/O is trivial and fast
Docs are great, but there is a lot to read initially
Start with 10 Minutes to pandas

7 . 1

http://pandas.pydata.org/pandas-docs/stable/10min.html

Questions ?Questions ?

How to get in touch:

@dimitern

One more thing,
buy Wes McKinney's book "Python for Data Analysis" (seriously)

8 . 1

