
David Liu, Python Technical Consultant Engineer

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Overview

• State of current concurrency and parallelism

• Nested parallelism and oversubscription

• A few composable methods of thread control

• How it works under the hood (tbb, smp)

• Pythonic style?

• Future of Pythonic style for parallelism

• Summary

2

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Current State of Python concurrency and
parallelism

• The Python ecosystem has had quite a few cool developments
over the last few years:

• Threading library (2008)
• Multiprocessing (2008)
• Twisted (2008)
• Concurrent futures (2009)
• Cython (2009)

• Tornado (2010)
• Numba (2012)
• Asyncio (2013)
• Dask (2015)
• Trio (2017)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Current State of Python concurrency and
parallelism
• The options in this space are very good compared to other

ecosystems

• Majority do a good job of playing nicely with the Global
Interpreter Lock (GIL) or walk around it with distributed or
vectorization techniques

• In more domain specific areas, one can rely on high-end C
libraries that have threading to harness parallelism
(SciPy/NumPy)

• Recent trends have Python accessing increasing core count
machines (from 2-4 to over 28 core) as commonplace

• Nested parallelism and oversubscription now quite possible in
kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

The Safety of the GIL

• The GIL has been complained about by many in the Python
space

• Many efforts have been made to try to remove the GIL

• As it stands, some of the main tenants of what guarantees the
GIL provides are hard to ignore

• Read/write safety for Python Object access

• Predictable behavior

• Ensure reference counting doesn’t get hosed

• Makes extension module development easier (and removes the
undue burden on developers)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

The Safety of the GIL (con’t)

• In reality, the GIL is a non-issue as many have found ways of
stepping around the GIL

• SciPy and NumPy are great examples—once a command is sent
to SciPy, it gets dispatched where BLAS implementations like
MKL and OpenBLAS are vectorized and parallelized

• Other frameworks directly access vectorization and exit the
Python+GIL layer to utilize threads—Numba, Numexpr, Cython
do this

• Multiprocessing frameworks can escape it via a separate process,
which can also have separate threads

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

The Safety of the GIL (con’t)

• Exiting the GIL with a C library is the generally the most Pythonic-
ish way of doing things (as it encompasses the abstraction of a
known computational flow)

• Composition of abstracted flows also works (splitting off into
multiple processes)

• It is quite rare to absolutely necessitate a language to be
completely thread safe; many of the advantages of Python would
go away

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

The spaces covered

Application-level
Parallelism

Data Parallelism-
Focus

Single-threaded
Concurrency

Concurrent Futures

Async/await
Threading
Trio

Dask

NumPy/SciPy
Numba
Cython
Numexpr

*Unicorn? MPI4PY…?

Multiprocessing
Joblib

Celery
Buildbot
Twisted
Tornado

MPI4PY (Single Node)
Openstack

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

The spaces covered

Application-level
Parallelism

Data Parallelism-
Focus

Dask

NumPy/SciPy
Numba
Cython
Numexpr

Multiprocessing
Joblib

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

The spaces covered

Python
Multiprocessing

Data Parallelism-
Focus
OpenMP, TBB,
Pthreads

NumPy/SciPy
Numba
Cython
Numexpr

Multiprocessing
Joblib

Python
Multithreading

Dask

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

The spaces covered

Python
Multiprocessing

Data Parallelism-
Focus
OpenMP, TBB,
Pthreads

NumPy/SciPy
Numba
Cython
Numexpr

Multiprocessing
Joblib

Python
Multithreading

Dask

Nested parallelism area
with risk of oversubscription

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Nested parallelism

data = numpy.random.random((256, 256))

pool = multiprocessing.pool.ThreadPool() # creates P threads

pool.map(np.linalg.eig, [data for i in range(1024)])

PPython threads * PNumPyàMKLàOpenMP threads = P2 threads total

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Oversubscription

P software threads

P CPUs P CPUs

P*P threads

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Oversubscription overheads

• Types of impact

• Direct OS overhead for switching out a thread

• CPU cache becomes cold: invisible impact

• Other threads are waiting until the preempted one returns

• Tensorflow, Scikit-Learn, PyTorch have a recurring battle with
these

• How do they solve it?

• Most use OMP_NUM_THREADS=1… KMP_BLOCKTIME=1…

• SMP ironically addresses this (more on this later)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Introducing composability modules

• tbb4py: Intel TBB for Python

• A Python C-extension package managing nested parallelism
using dynamic task scheduler of Intel® Threading Building
Blocks library

• Instantiates via monkey patching of Python’s pools and
enabling TBB threading layer for Intel® MKL
(no code changes required)

• Dynamically maps tasks onto coordinated pool(s)
to avoid excessive threads

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Introducing composability modules

• smp: Static Multi-Processing

• A Pure Python package managing nested parallelism through
coarse-grain static settings

• Instantiates via monkey patching of Python’s pools
(no code changes required)

• Utilizes affinity mask + OpenMP settings to statically allocate
resources and avoid excessive threads

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Nested parallelism (again)

data = numpy.random.random((256, 256))

pool = multiprocessing.pool.ThreadPool() # creates P threads

pool.map(np.linalg.eig, [data for i in range(1024)])

PPython threads * PNumPyàMKLàOpenMP threads = P2 threads total

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

TBB’s Thread coordination system

Application Application

Coordinated
TBB Threads

tbb4py module

Separate,
Uncoordinated
OpenMP Parallel
regions

TBB pool

Running
Python & MKL
under
the TBB
scheduler

OpenMP
Threading

Software Threads mapped
to logical processors

Too many Software threads
compete for logical
processors

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

SMP’s total threading affinity system

Running
under
the SMP
module

Augmented MKL or BLAS
threading

ThreadPool propagates
static masks/settings

ApplicationApplication

Separate,
Uncoordinated
OpenMP Parallel
regions

OpenMP
Threading

Too many Software threads
compete for logical
processors

20

Repository:

https://github.com/IntelPython/composability_bench/tree/
master/scipy2018_demo

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Current State of Python concurrency and
parallelism (slight return)

• Much of the concurrency and async areas are rich with packages
that help solve the needs of the majority of Python users

• True Parallelism is a small but strong area, so focus has generally
been towards concurrency + async offerings

• Most ways of achieving parallelism in this area rely on
vectorization frameworks or with multiprocessing or distributed

• How does one do so in a semi-pythonic way?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Pythonic-ish?

• Relatively few code changes

• Modify current behavior of a framework to fit one’s needs (or
prevent a massive rewrite)

• Directly in the Python std library

• Writable from the Python layer

• Easy interface to understand

• Keeps one in the Python layer (and does not drop to an IR)

How close can we get?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Pythonic-ish?
(tbb4py)
• Relatively few code changes

• Modify current behavior of a framework to fit one’s needs (or
prevent a massive rewrite)

• Directly in the Python std library

• Writable from the Python layer

• Easy interface to understand

• Keeps one in the Python layer (and does not drop to an IR)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Pythonic-ish?
(smp)
• Relatively few code changes

• Modify current behavior of a framework to fit one’s needs (or
prevent a massive rewrite)

• Directly in the Python std library

• Writable from the Python layer

• Easy interface to understand

• Keeps one in the Python layer (and does not drop to an IR)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Pythonic-ish style for parallelism?

• How realistic is it to have a firm requirement for a Pure Python
implementation?

• What is the best way to modify Python code? Monkey patching?
New framework?

• At what level should the parallelism be controlled?

• Can an interface be agreed upon to operate on parallelism?
(such as concurrency’s concurrent futures)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Pythonic-ish style for parallelism? (con’t)

• How realistic is it to have a firm requirement for a Pure Python
implementation?

• Not required, but highly recommended

• What is the best way to modify Python code? Monkey patching?
New framework?

• Monkey patching is seeming to be the new normal

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Pythonic-ish style for parallelism? (con’t)

• At what level should the parallelism be controlled?

• Python layer-sort of? It should have directives for how
additional layers can compose it as the best case

• Can an interface be agreed upon to operate on parallelism?
(such as concurrency’s concurrent futures)

• Jury is still out on this one, but with every iteration of attempts
(like smp) we get a more clear picture

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Summary

• tbb4py and smp attempt to address Pythonic-ish methods by
attempting to augment the way we use multithreading and
multiprocessing (attempting to not change underlying code)

• It is best to leave the two forms of multiprocessing and
multithreading at their same levels—Python level and C level,
respectively

• Most multithreading is domain specific it needs to be in C, so it
would need to be written or C or generated (like Numba,
numexpr, Cython)

• Perhaps leaving threading and multiprocessing directives as a
file or comments might be better… but doesn’t that just sound
like #pragma omp?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Summary (con’t)

• Having more “augmentable” threading behavior is more useful,
but that means putting the bulk of the responsibility on the users
themselves

• Threading for numerical has lots of known frameworks, proper
threading from non-numerical may be possible but will require
stricter typing than just ”Python Object”

• At that point… why are you using Python, right? Flexible vs.
Strict

• The Python ecosystem has a critical mass of good frameworks
looking to address multithreading and multiprocessing—so for
those of you working in it, keep going!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

O p tim ization N otice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique
to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does
not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

30

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

